首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Calcium carbonate (CaCO3) fillers pre-treated with the increased amount of stearate were used in order to tune the surface energy for a selective filler migration to the interface in immiscible styrene-acrylonitrile/ethylene–propylene–diene (SAN/EPDM) polymer blends. Various models were used in order to predict the filler accommodation at the blend interface when the interfacial tension becomes low and the wettability is good. The results showed that under optimal thermodynamic conditions, the filler might act as a compatibilizer and significantly improve the blend morphology. The coarse morphology of the initially immiscible SAN/EPDM changed into a fine blend morphology with the addition of the selected CaCO3 fillers with optimal surface energy. Due to the problem with filler agglomeration of initially nanosized CaCO3 fillers, we used masterbatch (MB) compositions for the blend preparation in order to get the better filler distribution. In this paper, the comparison between two types of MB compositions based on SAN and/or EPDM as a surplus phase with the selected filler was made considering the model predictions and its effects on the blend morphology and properties. In the case of using MB(EPDM) in blend preparation, the fine blend morphology resulted in improved mechanical and thermal properties, while with MB(SAN) the coarse blend morphology and worsened properties illustrated the opposite effect.  相似文献   

2.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

4.
The impact strength of the acrylonitrile-co-butadiene-co-styrene terpolymer–poly(2,6-dimethyl-1,4-phenylene oxide (ABS–PPO) blends compatibilized with styrene–acrylonitrile modified with glycidil methacrylate (SAN–GMA) terpolymer can be significantly enhanced by the various processing conditions in reaction extrusion. Four different ABS terpolymers are used depending on the composition of acrylonitrile, styrene, and butadiene. The morphology of polybutadiene latex in ABS-1, ABS-3, and ABS-4 is an agglomerated type, while that of ABS-2 is a bimodal one. The three different methods in in situ compatibilizing extrusion are employed; the simple mixing of ABS and PPO, the simultaneous mixing of ABS and PPO, the reactive compatibilizer SAN–GMA, maleic anhydride (MA; designated A-series), and then the stepwise mixing of the mixtures of ABS–SAN–GMA in the MA-modified PPO (designated B-series). Although the ABS-4–PPO blend depicted the highest impact strength in the simple mixing, the ABS-3B–PPO blend showed the best impact strength in the stepwise mixing. The former behavior may be arisen from the high content of BR, whereas the latter may be due to the agglomerated rubber phase with SAN–GMA. The highest impact strength (47 kg·cm·cm−1) was observed in ABS-3B–PPO at 50/50 with an inclusion of 10 wt % GMA (2) and 1 wt % MA. Thus, the proposed reaction mechanism is an existence of the compatibility between ABS and SAN–GMA and the reactivity between the MA-modified PPO and SAN–GMA. Phase morphology of the ABS-2–PPO and ABS-3–PPO blends were compared, and more efficient dispersion of ABS was observed in the B-series than in the A-series. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 841–852, 1999  相似文献   

5.
High rubber styrene–EPDM–acrylonitrile (AES) was prepared by the graft copolymerization of styrene (St) and acrylonitrile (AN) onto ethylene–propylene–diene terpolymer (EPDM) in n‐heptane/toluene cosolvent using benzoyl peroxide as an initiator. The effects of reaction conditions, such as reaction temperature, initiator concentration, EPDM content, the solvent component, and reaction time, on the graft copolymerization are discussed. In addition, according to the research on mechanical properties of the SAN/AES blend, a remarkable toughening effect of AES on SAN resin was found. By means of scanning electron microscopy, the toughening mechanism is proposed to be crazing initiation from rubber particles and shear deformation of SAN matrix. Uniform dispersion of rubber particles, as shown by transmission electron microscopy, is attributed to the good compatibility of SAN and AES. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 416–423, 2004  相似文献   

6.
In this morphological study the dispersion and localization behavior of 1 wt.% graphene nanoplatelets (GnPs) in melt mixed co-continuous polymer blends of polycarbonate (PC, 59 wt.%) and poly(styrene-acrylonitrile) (SAN, 40 wt.%) were investigated. Through varying the mixing sequence as well as the melt mixing parameters, different states of dispersion and different filler localizations were achieved. Melt mixing in a one-step process resulted in the poorest dispersion of the GnPs in the polymer blend. In this case, the filler could hardly be found localized selectively in one of the polymer components but formed its own component. In two-step mixing processes the GnPs were either premixed in PC or SAN to investigate the assumed filler transfer from the SAN into the PC component. Four different premixtures were prepared which showed that longer mixing time and higher rotation speed resulted in better dispersion of the GnPs in the polymer matrix. If the GnPs were predispersed in PC they could still be found in the PC component after blending with SAN. In the case that the GnPs were premixed in SAN, the filler was detected partially in the SAN or at the blend interface, as well as smaller sized particles were found in the PC component. It could be shown that the size and aspect ratio of the filler play a significant role on the localization of GnPs in melt mixed polymer blends.  相似文献   

7.
The tensile properties of the blends containing neat acrylonitrile–butadiene–styrene (ABS), styrene–acrylonitrile (SAN) and the sodium sulphonated SAN ionomer have been investigated as a function of ion content of the ionomer in the blend. The tensile toughness and strength of the blends showed maximum values at a certain ion content of the ionomer in the blend. This is attributed to the enhanced tensile properties of the SAN ionomer by introduction of ionic groups into SAN and the interfacial adhesion between the rubber and matrix phase in the blend. The interfacial adhesion was quantified by NMR solid echo experiments. The amount of interphase for the blend containing the SAN ionomer with low ion content (3·1mol%) was nearly the same as that of ABS, but it decreased with the ion content of the ionomer for the blend with ion content greater than 3·1mol%. Changing the ionomer content in the blends showed a positive deviation from the rule of mixtures in tensile properties of the blends containing the SAN ionomer with low ion content. This seems to result from the enhanced tensile properties of the SAN ionomer, interfacial adhesion between the rubber and matrix, and the stress concentration effect of the secondary particles. © 1998 SCI.  相似文献   

8.
Covulcanization of elastomer blends constituting styrene–butadiene rubber (SBR) and ethylene–propylene–diene (monomer) rubber (EPDM) was successfully performed in the presence of reinforcing fillers like carbon black and silica by using a multifunctional rubber additive, bis(diisopropyl)thiophosphoryl disulfide (DIPDIS). The polarity of EPDM rubber was increased by a two‐stage vulcanization technique, which allowed the formation of rubber‐bound intermediates. In this way the migration of both curatives and reinforcing fillers in the EPDM–SBR blend could be controlled and cure rate mismatch could be minimized. The process significantly improved the physical properties of the blend vulcanizates. The phase morphology, as evident from the SEM micrographs, was indicative of the presence of a much more compact and coherent rubber matrix in the two‐stage vulcanizates. Different accelerator systems were studied to understand better the function and effectiveness of DIPDIS in developing homogeneity in the blends of dissimilar elastomers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1231–1242, 2004  相似文献   

9.
The compatibilizing effect of nano sized calcium carbonate filler on immiscible blends of styrene‐co‐acrylonitrile/ethylene propylene diene (SAN/EPDM) was examined. The surface energy of the calcium carbonate was modified by stearic acid. The compatibility of SAN/EPDM blends was studied by following the glass transition temperature Tg by DSC. SEM was used to observe the blend morphology and the X‐ray analyzer was used to detect the calcium from filler in samples. Mechanical properties of the blends were determined, and related to changes of polymer‐filler interactions and morphology. The results suggest that the morphology of the SAN/EPDM blends studied was affected by the reduction of surface energy of the filler.

SEM micrograph of an SAN/EPDM blend with 5% of maximally treated filler.  相似文献   


10.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

11.
The effects of blend ratio, crosslinking systems, and fillers on the viscoelastic response of ethylene–propylene–diene monomer (EPDM)/styrene–butadiene rubber (SBR) blends were studied as functions of frequency, temperature, and cure systems. The storage modulus decreased with increasing SBR content. The loss modulus and loss tangent results showed that the EPDM/SBR blend vulcanizate containing 80 wt % EPDM had the highest compatibility. Among the different cure systems studied, the dicumyl peroxide cured blends exhibited the highest storage modulus. The reinforcing fillers were found to reduce the loss tangent peak height. The blend containing 40 wt % EPDM showed partial miscibility. The dispersed EPDM phase suppressed the glass‐transition temperature of the matrix phase. The dynamic mechanical response of rubbery region was dominated by SBR in the EPDM–SBR blend. The morphology of the blend was studied by means of scanning electron microscopy. The blend containing 80 wt % EPDM had small domains of SBR particles dispersed uniformly throughout the EPDM matrix, which helped to toughen the matrix and prevent crack propagation; this led to enhanced blend compatibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Halloysite nanotubes (HNTs) were investigated concerning their suitability for rubber reinforcement. As they have geometrical similarity with carbon nanotubes, they were expected to impart a significant reinforcement effect on the rubber compounds but the dispersion of the nanofillers is difficult. In this work, HNTs were surface‐modified by plasma polymerization to change their surface polarity and chemistry and used in a natural rubber/butadiene rubber blend in the presence of carbon black. The aim of the treatment was to improve the rubber–filler interaction and the dispersion of the fillers. A thiophene modification of HNTs improved stress–strain properties more than a pyrrole treatment. The surface modification resulted in a higher bound rubber content and lower Payne effect indicating better filler–polymer interaction. Scanning electron microscopy measurements showed an increased compatibility of elastomers and fillers. As visualized by transmission electron microscopy, the thiophene‐modified HNTs formed a special type of clusters with carbon black particles, which was ultimately reflected in the final mechanical properties of the nanocomposites. The addition of HNTs increased loss angle. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The present work studies the morphology in poly(ethylene-terephthalate)/polyethylene (PET/HDPE) polymer blends and its impact on blend properties. Mixing process in blend preparation is the important parameter for the type of obtained blend morphology and final blend properties, so two different mixing processes were used. In the first one, all components are mixed together while another one includes two step mixing procedure using two different types of masterbatch as compatibilizers for PET/HDPE system. Such blends can be considered in terms of PET polymer recycling in the presence of HDPE impurities in order to find suitable compatibilizers, which will enhance the interactions between these two polymers and represents the possible solution in recycling of heterogeneous polymer waste. The morphology of the studied PET/HDPE blends was inspected by scanning electron microscopy to examine the influence of the mixing process and various compositions on blends morphology, and interactions between PET and HDPE. The surface properties were characterized by contact angle measurements. The effect of the extrusion on the samples thermal behaviour was followed by DSC measurements. FTIR spectroscopy was used for the determination of interactions between blend constituents. It can be concluded that the type of mixing process and the carefully chosen compatibilizer are the important factors for obtaining the improved compatibility in PET/HDPE blends.  相似文献   

14.
The miscibility of polychloroprene rubber (CR) and ethylene–propylene–diene terpolymer rubber (EPDM) was studied over the entire composition range. Different blend compositions of CR and EPDM were prepared by initially mixing on a two‐roll mill and subsequently irradiating to different gamma radiation doses. The blends were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurement, hardness measurement, and solvent permeability analysis. The compatibility of the blends was studied by measuring the glass transition temperature and heat capacity change of the blends. The immiscibility of blends was reflected by the presence of two glass transition temperatures; however, partial miscible domains were observed due to inter diffusion of phases. Permeation data fitted best with the Maxwell's model and indicated that in CR‐EPDM blends, EPDM exists as continuous phase with CR as dispersed phase for lower CR weight fractions and phase inversion occurred in 40–60% CR region. It was observed that CR improved oil resistance of EPDM; however, the effect was prominent for blends of >20% CR content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Acrylonitrile‐co‐styrene‐co‐methylmethacrylate (AN‐S‐MMA) terpolymer was prepared by bulk and emulsifier‐free emulsion polymerization techniques. The bulk and emulsion terpolymers were characterized by means of Fourierr transform infrared spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography, thermal gravimetric analysis, and elemental analysis. The kinetics of the terpolymerization were studied. The terpolymers were then incorporated into butadiene—acrylonitrile rubber (NBR)/ethylene propylene diene monomer rubber (EPDM) blends and into chloroprene rubber (CR)/EPDM blend. The terpolymers were then tested for potential as compatibilizers by using scanning electron microscopy and differential scanning calorimetry. The terpolymers improved the compatibility of CR/EPDM and NBR/EPDM blends. The physicomechanical properties of CR/EPDM and NBR/EPDM blend vulcanizates revealed that the incorporation of terpolymers was advantageous, since they resulted in blend vulcanizates with higher 100% moduli and with more thermally stable mechanical properties than the individual rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3143–3153, 2003  相似文献   

16.
Attempts were made to prepare dynamically crosslinked ethylene–propylene–diene monomer/polypropylene (EPDM/PP, 60/40 w/w) blends loaded with various amounts of silica as a particulate reinforcing agent. The dispersion of silica between the two phases under mixing conditions, and also extent of interaction, as the two main factors that influence the blend morphology were studied by scanning electron microscopy. Increasing the silica concentration led to the formation of large‐size EPDM aggregates shelled by a layer of PP. Dynamic mechanical thermal analysis performed on the dynamically cured silica‐loaded blend samples showed reduction in damping behavior with increasing silica content. Higher rubbery‐like characteristics under tensile load were exhibited by the silica‐filled EPDM/PP‐cured blends. However, increasing the silica level to 50 phr led to the enhancement of interface, evidenced by increases in the tensile modulus and extensibility of the blend compared with those of the unloaded sample. Addition of a silane coupling agent (Si69) into the mix improved the mechanical properties of the blend, attributed to the strengthening of interfacial adhesion between the PP matrix and silica‐filled EPDM phase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2000–2007, 2004  相似文献   

17.
SAN and EPDM are not miscible. In this work, the dry blending of SAN and EPDM using Centrex (acrylonitrile/EPDM/styrene graft copolymer) and EPMMA (EPDM‐g‐Mah) as coagents was studied. Centrex content was used at 6–20 wt %. EPMMA content in the mixture was 20 wt %. The effects of coagent type and content on the mechanical properties and morphology were investigated. SEM micrographs of SAN/EPDM/Centrex and SAN/EPDM/EPMMA blends showed that both Centrex and EPMMA have an effective role in forming a finer morphology. For the ternary blends, the addition of coagent resulted in a significant reduction in the size of the dispersed phase. The mechanical properties of SAN/EPDM/coagent blends were improved significantly in comparison to the simple SAN/EPDM blends. SAN/EPDM/Centrex blends showed higher stress‐at‐break and SAN/EPDM/EPMMA blends showed higher impact strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Multiwalled carbon nanotube (MWCNT)‐filled polycarbonate (PC)/styrene–acrylonitrile (SAN) blends with a wide range of blend compositions were prepared by melt mixing in a rotational rheometer, and the effect of SAN on the electrical properties of the PC/MWCNT composites was studied. The structure/electrical property relationship was investigated and explained by a combination of MWCNT localization and blend morphology. Transmission electron micrographs showed selective localization of MWCNTs in the PC phase, regardless of the blend morphology. When the SAN concentration was 10–40 wt %, which corresponded to sea‐island (10–30 wt %) and cocontinuous (40 wt %) blend morphologies (PC was continuous in both structures), the electrical resistivity decreased with increases in the SAN content. The concept of an effective volume concentration of MWCNTs was used to explain this effect. When the SAN concentration was 70 wt % or higher, the electrical resistivity was very high because MWCNTs were confined in the isolated PC particles. In addition, SAN was replaced by other polymers [polystyrene, methyl methacrylate/styrene, and poly(methyl methacrylate)]; these yielded similar blend morphologies and MWCNT localization and showed the generality of the concept of effective concentration in explaining a decrease in the electrical resistivity upon the addition of a second polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The nonisothermal degradation process of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black filler was investigated with thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG), using the different calculation procedures. Using different isoconversional methods, it was found that the degradation of the 50 phr loaded carbon black in NBR/EPDM (80/20) blend represents the complex process, where exists the conversion region with a constant value of the apparent activation energy (Ea). It was found that the degradation process of the carbon black‐loaded polymer blend under nitrogen atmosphere, can be described by the three‐(D3) dimensional diffusion mechanism. Good agreement was observed between the experimental and calculated differential (rate) conversion curves, for the investigated degradation process. It was established that the considered polymer blend which have high contents of the carbon black (50 phr carbon black), shows very strong self‐protective behavior (i.e., in the formation of a protective barrier). POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号