首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
声共振混合作为一种解决力/热敏感超细材料均匀分散混合问题的新方法,其技术特点是混合容器工作在共振状态下使用不超过200Hz的振动产生低频声场促进混合。本文采用气固液三相流模型对一种固体、一种液体在声共振混合容器中的混合过程进行建模。固体颗粒与液体之间相互作用系数采用Gidaspow公式。采用固体颗粒体积分数标准偏差作为标准对混合均匀性进行了评价。计算结果表明,在100g振动加速度下容器中出现了体流现象,并初步计算了不同高宽比、不同激振参数条件下的混合特性,对计算结果进行了分析。最后利用自搭建的声共振混合样机,分别在低固含量、高固含量条件下进行实验,记录混合过程中固体颗粒的运动轨迹。实验结果初步验证了仿真模拟的正确性以及声共振样机的混合能力。  相似文献   

2.
搅拌功率和循环流量是考察搅拌桨性能和搅拌槽内混合效果的两个重要参数。作者在直径为5 0 0 m m和 80 0 mm的带导流筒的搅拌槽内 ,试验测试了现工业生产中酯化反应器内的搅拌桨的循环流量准数和功率准数 ,并根据工艺要求优选出以 CBY螺旋浆与直叶透平桨组成的双层浆式搅拌器 ,该搅拌桨比现工业用桨在消耗相同功率的条件下能产生更大的循环流量  相似文献   

3.
介绍了筒式搅拌器的结构、设计原理及性能测试研究结果.筒式搅拌器在结构上主要由简体和内弯叶片组成.搅拌时使介质同时产生强大的径向流和轴向流.从理论上分析了液体质点在筒式搅拌器翅片内的运动规律.简式搅拌叶轮的各部位尺寸设计取决于液体性质,混合要求、容器直径和转速等因素.测试采用德国IKAEUROSTAR power con...  相似文献   

4.
介绍了新型行星式搅拌器的结构和设计原理。该新型搅拌器有一个传动轴和数个行星叶轮组成,行星轮自转的驱动力来自液体阻力,行星叶轮自转速度的大小与公转速度、公转半径和自转半径有关,而与行星叶轮高度无关;自转方向与公转方向相反。测试采用IKA EUROSTAR power control搅拌装置和Labword软件,试验介质为水和甘油。通过对搅拌器的搅拌性能试验研究发现,流体质点的轴向流线为高速螺旋线,主要流型为径向流和轴向流,因此,在主轴转速较低的情况下被搅拌液体亦可获得满意的混合效果。通过对试验数据分析处理,得到测试用行星式搅拌器的功率准数、混合时间数、排液量和循环量等搅拌性能曲线及经验公式。  相似文献   

5.
BACKGROUND: The pulsed plate column (PPC) with packed bed of solids in the interplate spaces finds use as a three phase aerobic bioreactor and is a potential heterogeneous catalytic reactor. Good knowledge of the extent of mixing in the liquid phase and solid‐liquid mass transfer coefficient are essential for modeling, design and optimization of these columns. The present work aims at the study of liquid phase mixing and solid–liquid mass transfer characteristics in a three phase PPC. RESULTS: Residence time distribution studies were performed. Dispersion number was found to increase with increase in liquid superficial velocities, frequency of pulsation, amplitude of pulsation and the vibrational velocities. Increase in frequency and amplitude of pulsation, and hence increase in vibrational velocity, resulted in increase of the solid–liquid mass transfer coefficient. CONCLUSIONS: The mixing behaviour in this contactor approximated a mixed flow behaviour. The three phase PPC was found to outperform many other kinds of three phase contactors in terms of solid liquid mass transfer characteristics. Empirical correlations developed can be used for the determination of solid–liquid mass transfer coefficients for three phase PPC and hence can facilitate the design, scale‐up and modeling of these columns, when used as chemical or biochemical reactors. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
The flow patterns established in a continuously-fed stirred tank, equipped with a Mixel TT axial-flow impeller, have been investigated by laser Doppler velocimetry, for a high and a low value of mean residence time—mixing time ratio. The pseudo-two-dimensional axial-radial-velocity vector plots, as well as the spatial distributions of the tangential velocity component and the velocity profiles around the impeller, show that the interaction between the incoming liquid and the liquid entrained by the agitator rotation cause the flow pattern in the vessel to become strongly three-dimensional, especially in the region between the plane, where the feeding tube lies, and the 180°-downstream plane. The increase in the liquid flow rate and the location of the feed entry both affect the flow pattern, with the latter having a more pronounced effect. The overall process, in this mode of operation, depends upon the appropriate configuration and choice of parameters: for conditions corresponding to high liquid flow rates, the flow patterns indicate the possibility of short-circuiting, when the liquid is fed into the stream being drawn by the agitator and when the outlet is located at the bottom of the vessel.  相似文献   

7.
In this study, the effects of impeller rotation speed, off‐bottom clearance, blade angle, types of solid and liquid, etc., on the suspension pattern of sedimentary particles and particle rise height in liquid were investigated with a hemispherical vessel without baffles under low particle concentration. The transition conditions of suspension pattern between regimes I and II, and regimes II and III, were observed visually, and their non‐dimensional equations were expressed with an acceptable correlation by varying the above operation factors a great deal. Here, regime I is stagnation of particles on a vessel bottom, II is partial suspension, and III is complete suspension in liquid. The non‐dimensional equation of the maximum particle rise height was also successfully obtained. The combination of the non‐dimensional equations of transition and maximum particle rise height permitted us to determine the adequate solid/liquid mixing operation conditions without collision of particles with device parts.  相似文献   

8.
在化工生产过程中,氢化反应是一种较为复杂的单元过程,促进氢化反应顺利进行的因素有温度、压力、介质、酸碱度、催化剂以及物料的接触状态。从生产实际出发,剖析了氢化反应进程中固、液、气3种状态的反应物料,因搅拌能力不足致使反应速度缓慢的原因,并根据问题所在,有针对性地改变搅拌器型式,采用新型设计的组合型多层搅拌器可以使固、液、气三相能充分混合,增加了参与反应物料的接触面积,提高了气、液反应能力和催化剂的催化作用,达到加快生产反应速度的目的,缩短了反应时间,提高了产品收率。  相似文献   

9.
The impact of floating suspended solids on the homogenization of the liquid phase in a stirred vessel was studied. The experiments were performed in a tank with an internal diameter of 0.32 m, equipped with a 45° pitched four-blade turbine (PTD) placed at varying positions in the vessel. Tap water was used as the liquid phase and polyethylene particles (PEHD) were used as the solid phase. The impeller speed was varied from N = 200–900 rpm. The mixing time of the suspended system was measured by a conductivity technique using a sodium chloride solution as the tracer, whereas power consumption was measured by the torque table. The influence of mean concentration of the suspended floating solids, average particle size, surface tension at the liquid/air interface and impeller diameter and its position on the mixing time and power consumption were analyzed.  相似文献   

10.
The influence of the stirrer type and of the geometrical parameters of both tank and agitator (clearance of an impeller from tank bottom, impeller diameter, draft tube and geometry of the tank bottom) on power consumption and mixing time in liquid phase under turbulent regime conditions (Re > 104) have been studied. Different types of agitators have been used, namely Rushton turbine, 45° pitched‐blade turbine, MIXEL TT and TTP propellers and 1‐stage or 2‐stage EKATO‐INTERMIG propellers. All these stirrers were tested with the same power consumption per unit mass of liquid. On the basis of measured power consumption per unit mass, which is required to achieve the same degree of mixing, the results obtained in the present work show that the TTP propeller is the most efficient in liquid phase. Recommendations on the optimum geometric configuration have been made for each type of stirrer.  相似文献   

11.
To develop an enhanced form of solid‐liquid apparatus, an unbaffled agitated vessel has been constructed, fitted with an agitation system using an impeller whose rotation alternates unsteadily in direction, i.e. a forward‐reverse rotating impeller. In this vessel, solid‐liquid mass transfer was studied using a disc turbine impeller with six flat blades. The effect of impeller rotation rate as an operating variable on the mass transfer coefficient was evaluated experimentally using various geometrical conditions of the apparatus, such as impeller diameter and height, in relation to the impeller power consumption. Mixing of gas above the free surface into the bulk liquid, i.e. surface aeration, which accompanied the solid‐liquid agitation, was also investigated. Comparison of the mass transfer characteristics between this type of vessel and a baffled vessel with a unidirectional rotating impeller underscored the sufficient solid‐liquid contact for prevention of gas mixing in the forward‐reverse rotation mode of the impeller. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
刮壁搅拌桨的最优设计   总被引:5,自引:0,他引:5  
运用罚函数Galerkin加权余量有限元数值算法模拟了Votator、C&R反应器和刮壁槽式釜中轴截面的流速和剪切分布。计算结果表明,Votator,C&R反应器中流动和剪切分布较刮壁槽式釜更有利于流体的混合和壁面的传热。对C&R反应器,采用无间隙刮板,其传热和混合性能优于有间隙刮板。建议刮壁搅拌反应器的设计采用类似Votator和C&R反应器的环隙结构和无间隙的刮板形式。  相似文献   

13.
New internals have been designed and implemented in a semi‐industrial continuous solid‐liquid pulsed column. By coupling these internals with a non‐sinusoidal pulsation, a better control of polydispersed solid particles is achieved. The pulsation is composed of a mixing step during which only the liquid flows through the column and an impulsion step designed to transport the solid phase from stage to stage. Solid and liquid phase behaviors are characterized thanks to residence time distribution measurements. This study demonstrates the strong impact of the pulsation and of the liquid flow rate during the impulsion in reducing particle segregation inside the pilot. The effects of operating parameters on the liquid phase are also investigated and the choice of an operating compromise is discussed to balance the advantages and drawbacks of the process.  相似文献   

14.
The increasing demand for products from mammalian cells has prompted the authors to develop a new type of bioreactor. Its significant features include the supply of oxygen, homogeneous distribution of microcarrier suspensions and process control. Media with high protein contents, required for mammalian cell cultures tend to generate foam. This causes the flotation of solid particles. The reactor was equipped with a system of porous hydrophobic Accurel hollow fibre membranes in order to prevent the formation of bubbles. The membrane is coiled in the form of a basket, or fixed on several carriers. If the liquid pressure is higher than that of the gas phase inside the membrane, a bubble - free oxygen supply to the culture broth can be achieved. The problem of axial mixing of microcarier suspensions was solved by the use of a spiral agitator, attached underneath the aeration system at the bottom of the reactor. The combined aeration and mixing system, which is driven by an eccentric motor, undergoes a tumbling motion. Sufficiently homogeneous suspensions are produced in this system at low membrane velocities, i.e. in presence of low shear forces.  相似文献   

15.
Developing an agitator suitable for wide viscosity range is of great significance to the energy saving and efficiency improvement by the intensification of fluid flow and mixing process. The power characteristics, flow field distribution, turbulence characteristics and mixing performance of multi-blade combined (MBC) agitator under laminar to turbulent flow state were studied experimentally and numerically at the level of large eddy simulation. The predicted power curve is consistent with the experimental results. Tangential flow is the main flow in laminar flow. With the increase of Reynolds number (Re), axial and radial flows in the vessel gradually increase. When Re reaches 486, the velocity field distribution is basically the same as that in the turbulent flow. At the same energy consumption level, MBC agitator is superior to the commercial Maxblend agitator in mixing high viscosity fluid. The intensification of axial and radial flows is due to the dispersed arrangement of the blades, enabling the MBC agitator to achieve larger axial and radial flows from the transitional flow to the turbulence state. Moreover, the turbulent kinetic energy is evenly distributed and the mixing process is significantly accelerated.  相似文献   

16.
许言  王健  武永军  骆培成 《化工学报》2020,71(11):4964-4970
开发可适用于较宽黏度范围的搅拌桨,强化釜内的流体流动和混合过程对于搅拌釜的节能增效具有重要的意义。实验与数值模拟相结合,在大涡模拟层面研究了多叶片组合式搅拌桨(MBC桨)从层流到湍流状态下,釜内的功率特性、流场分布、湍流特性和混合性能。结果表明:预测的功率曲线与实验结果一致;层流状态下釜内以切向流动为主,随着Reynolds数(Re)的增大,釜内轴向和径向流动逐渐增强,当Re达到486时,速度场分布与湍流状态下基本一致;在相同的能耗水平下,MBC桨对高黏度流体的混合性能优于商业Maxblend桨。桨叶的分散组合布置,强化了釜内的轴向和径向流动,使得MBC搅拌桨在从过渡流到湍流状态下均可实现较大的轴径向流动,湍动能分布较为均匀,混合过程显著加快。  相似文献   

17.
1,3-二氯-2-丁烯(DCB)的氯化过程同时存在加成反应、取代反应和连续反应,DCB与氯气混合不均匀和反应热移除效果不佳会降低取代氯化的选择性。搅拌槽内流场分布特征与流体的混合效果、化学反应的转化率和选择性等密切相关,调控流场结构有助于强化DCB的氯化行为。文中结合搅拌器专用计算流体动力学软件MixSim 2.0.2,模拟了在偏心射流条件下4 cm二直叶桨式搅拌器、4 cm斜叶圆盘搅拌器和5 cm斜叶圆盘搅拌器槽内的流场分布特征,并进行了DCB氯化实验。研究表明:偏心射流能改变流场分布,控制流场的拟序结构,强化混合效果。在偏心斜射流的条件下,5 cm斜叶圆盘搅拌器的氯化效果较优,能够使DCB氯化的主产物2,3,4-三氯-1-丁烯(TCB)的收率提高到87.9%。  相似文献   

18.
一种新型混合装置的开发与研究   总被引:1,自引:0,他引:1  
混合与许多化工过程密切相关,为了克服传统的搅拌混合装置或结晶器的缺点,运用薄膜振动混合的理念,开发出一种新型的混合装置/结晶器。其具有低剪切应力无搅拌混合和达到固体颗粒的均匀悬浮。在完成新型混合装置的冷模设计加工后,测定了它的流型;并用脱色法测定了甘油与水调配出不同中高粘度的流体的混合时间;通过测定不同振动频率下的混合时间的变化,绘制出混合时间变化曲线,从而可确定最佳的操作条件;通过加入不同密度的固体颗粒,模拟结晶过程的固体相悬浮状况。这种新型混合装置具有较高的实用价值,市场前景广阔。  相似文献   

19.
BACKGROUND: Airlift reactors are of interest for many different processes, especially for three‐phase systems. In this study the behavior of a high‐loading three‐phase external‐loop airlift reactor was examined. In particular, the effect of parameters such as airflow rate (riser superficial gas velocities between 0.003 and 0.017 m s?1), solids loading (up to 50%, v/v) on liquid circulation velocity in the air‐water‐alginate beads system as a crucial hydrodynamic parameter was studied. RESULTS: It was observed that increase of the airflow rate resulted in increase of the liquid velocity in the system. The same result but less pronounced was observed by introducing small amounts of solid particles up to 7.5% v/v. However, further introduction of solids caused decrease of the liquid velocity. Laminar regime for the liquid circulation was observed for low gas velocities. Minimum gas velocities for recirculation initiation in the reactor were determined for all solid loadings and linear dependence on the solid content was found. Gas holdups for the three‐phase system were larger than for the two‐phase system in all experiments. A simple model for predicting the liquid circulation velocity in the three‐phase system with high solid loading of low‐density particles was developed. This model is based on the viscosity of integrated medium (solid + liquid) which is a new aspect to analyze this phenomenon. CONCLUSIONS: The developed model shows very good agreement with the experimental results for all solid loadings. It also includes the influence of reactor geometry on the liquid circulation velocity thus enabling optimization. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
The inclusion of a structured packing as internal in a liquid‐solid fluidized bed allows expansion of the liquid velocity operation range before elutriation, promoting the liquid solid contact and mixing. The bed expansion of liquid‐solid fluidized beds provided with structured packing as internals is examined, for solids denser than the liquid phase and within a wide range of operating conditions. A correlation to estimate the bed expansion in liquid‐solid fluidized beds using structured packing as internals is developed. In addition, the feasibility of employing structured packing as internals for favoring classification of different density particles is demonstrated by analyzing the mass elutriated from the column at different liquid velocities for single particles or binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号