首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study evaluated the water absorption, solubility, kinetics of water diffusion and residual monomer content of commercial poly(methyl methacrylate) (PMMA) denture base material modified with dimethyl itaconate (DMI) and di‐n‐butyl itaconate (DBI). Water absorption and solubility were measured gravimetrically while the residual monomer content was analysed using high‐performance liquid chromatography with ultraviolet detection. It was found that the addition of di‐n‐alkyl itaconates significantly decreases the residual methyl methacrylate (MMA) content in the polymerized material. Maximum uptake (M) and loss (M), and diffusion coefficients for absorption (Da) and desorption (Dd) of water through all materials were established. M shows a linear decrease with increasing amount of itaconate in the system while Da shows a linear increase with increasing amount of itaconate, both of these effects being more pronounced when DBI is present compared to DMI. M is a linear function of the value of Hoy's solubility parameter. The reduction in residual MMA promoted by addition of a small amount of di‐n‐alkyl itaconates can improve the applicative properties and biocompatibility of the PMMA denture base material. Also, it is shown that modification of the denture base material with di‐n‐alkyl itaconates can enable precise control of water absorption in the system. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

4.
An in situ polymerization with a later solution co‐mixing approach was used in the preparation of polymethyl methacrylate (PMMA) matrix composites using hydroxyapatite (HA) nanoparticles and short carbon fibers(C(f)) as reinforcing materials. The microstructures and fracture surface morphologies of the prepared C(f)/HA‐PMMA composite were characterized using XRD, FTIR, SEM, EDS, and FESEM analyses. The mechanical properties of the composites were tested by a universal testing machine. Results show that the surface of nitric acid‐oxidized carbon fibers and lecithin‐treated HA contain new functional groups. Uniform dispersion of short fibers and HA nanoparticles in PMMA matrix is successfully achieved and the mechanical properties of the composites are obviously improved. The flexural strength, flexural modulus, and Young's modulus of the composites reach the maximum value 128.12 MPa, 1.150 GPa, and 4.572 GPa when carbon fiber and HA mass fraction arrive to 4% and 8%, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Uniform and beads free fibers of pristine syndiotactic PMMA (s-PMMA), isotactic PMMA (i-PMMA), and their blends in the ratio of s:i = 3:1, 1:1 and 1:3 were successfully prepared using the electrospinning technique. The tactic PMMA blend fibers showed unique thermal stability and glass transition temperatures compared to their pristine counterparts. An interesting endotherm peak was observed for the s:i = 1:3 electrospun fibers, which might indicate a complex formation between the two tactic PMMAs. Systematic surface functionalities study by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) revealed the interactions between these two tactic PMMAs. Biocompatibility of tactic PMMA and their blend fibers was first time comparably investigated using HeLa as the model mammalian cell line; an intriguing observance was first revealed that the blend fibers showed better biocompatibility than both pristine ones, though the behind mechanism is not well understood yet.  相似文献   

6.
In this study, the mechanical properties of two different permanent soft lining materials and their bonding to poly(methyl methacrylate) (PMMA) were compared. Both of the soft liners were heat‐cured commercial materials. The polymerization was carried out by conventional methods suggested by manufacturer, and the curing was done at the temperature of boiling water for 5, 15, 25, and 35 min. The sample groups were tested in the computer‐aided tensile‐testing machine at a rate of 2 mm/min. The slow rate helps the collection of more and more reliable data. At this time, the stress–strain curves were used to calculate ultimate tensile strength, elastic modulus, resilience, and toughness. The measurements were carried for PMMA, Molloplast B, Flexor, and a combination of PMMA/soft liner. After introducing the soft lining material on PMMA of the same thickness, the new material structure was more elastic than the original PMMA. Flexor showed adhesive failure at studied curing periods, but Molloplast B gave larger tear strength values and cohesive rather than adhesive failure at the 25‐min and 35‐min curing times. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 467–474, 2002  相似文献   

7.
Fiber-polymer matrix interfacial debonding is often observed when mechanical loads are applied to fiber reinforced polymer composites. These defects usually end-up leading to a catastrophic fracture of the composites. In this work, carbon quantum dots (CDs) were incorporated on the surface of carbon fibers (CF), and poly(methyl methacrylate) (PMMA) composites with these modified fibers were able to restore their original properties after been previously damaged. To this end, CDs were synthesized and used to decorate the surface of CF. These decorated CF were then incorporated into PMMA by using a high intensity mixer. The prepared composites were submitted to dynamic mechanical, three-point bending and self-healing tests. Fluorescent CDs with diameters of 10 nm and functional groups, such as amine and carboxylic groups were successfully synthesized by the microwave pyrolysis method. The deposition of CDs on the surface of CF was evaluated and quantified by UV–vis spectroscopy and 1.2 wt.% of CDs on CF was determined. Composites with different surface treatments (including the presence of CD) did not show significant differences in strength, stiffness and damping, suggesting that the surface treatments on CF did not lead to major changes in the degree of interfacial interaction. Self-healing tests showed that damaged composites with CD decorated CF were able to restore their original properties, while no self-healing effect was noted in composites with no CD on CF. The observed self-healing behavior between PMMA and CF decorated with CD is due to the interactions between chemical groups on the surface of the CD and PMMA. Thus, damages related to fiber-matrix interfacial detachments can be repaired through reversible interactions based on CD.  相似文献   

8.
Poly(methyl methacrylate) (PMMA) is used for removable prostheses. However, PMMA denture base resin does not meet all the mechanical requirements of prostheses. The aim of this in vitro study was to compare the transverse strength, modulus of elasticity, and impact strength values of nonreinforced heat‐polymerized and microwave‐polymerized denture base resin with those of denture base resin reinforced with continuous unidirectional E‐glass, woven E‐glass, and ultrahigh‐molecular‐weight polyethylene fibers. The mechanical properties of polymer reinforced with polyethylene fibers showed no significant increase in flexural properties. However, reinforcement with Stick fiber improved the mechanical properties. The test specimens that expressed low fracture strength values showed void spaces inside the test specimens. © 2009 Wiley Periodicals, Inc. J Appl Polym, 2009  相似文献   

9.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A blend of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (PSAN) has been evaluated as a composite polymer electrolyte by means of differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ac impedance measurements, and linear sweep voltammetry (LSV). The blends show an interaction with the Li+ ions when complexed with lithium perchlorate (LiClO4), which results in an increase in the glass‐transition temperature (Tg) of the blends. The purpose of using PSAN as another component of the blend is to improve the poor mechanical properties of PMMA‐based plasticized electrolytes. The mechanical property is further improved by introducing fumed silica as inert filler, and hence the liquid electrolyte uptake and ionic conductivity of the composite systems are increased. Room‐temperature conductivity of the order of 10?4 S/cm has been achieved for one of the composite electrolytes made from a 1/1 blend of PSAN and PMMA containing 120% liquid electrolyte [1M LiClO4/propylene carbonate (PC)] and 10% fumed silica. These systems also showed good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1319–1328, 2001  相似文献   

11.
Constrained shrinkage of fibers is the primary method used to examine orientation in amorphous materials. During the test, fibers are constrained, heated, and the stress that develops is measured as a function of time and temperature. This article describes an apparatus developed to measure that stress and a series of experiments for melt‐spun poly(methyl methacrylate) fibers fabricated under three conditions: (1) constant viscosity, (2) increasing temperature, and (3) increasing draw velocity. Results show that both the rates of rise and the decay of the fiber shrinkage stress have an Arrhenius relationship with temperature. Fibers fabricated at a constant viscosity have the same maximum shrinkage stress and rate of stress decay. As the processing temperature decreases or as draw velocity increases, for other parameters held constant, the maximum shrinkage stress increases. The rate of stress rise increases with decreasing processing temperature or increasing draw velocity. Maximum shrinkage stress also increases with increasing molecular orientation when measured by a different test, free heat‐induced shrinkage of the fibers. However, it was not possible to correlate both of these results to rubber elasticity theory attributed to the high degree of orientation present in the fibers and high polydispersity in the starting material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4047–4056, 2004  相似文献   

12.
The thermal and mechanical properties of dental base materials cured by microwave and conventional heat methods were studied. The commercial dental base poly(methyl metacrylate) (PMMA) powder and liquid were mixed in a 3/1 ratio. They were polymerized by a peroxy catalyst at 65°C, then cured with a boiling water temperature and microwave radiation for periods of 5, 10, 15, 20, 25, 30, and 35 min for heat curing and 1, 2, 3, 5, and 7 min for microwave radiation. The microwave radiation outputs used were 500 and 700 W. The products of 5‐min heat curing and 1‐, 2‐, and 7‐min microwave curing were soluble in chloroform. All the others were partially soluble. The viscosity‐average molecular weights of the soluble samples were about 1 × 106. The thermal properties of the polymer samples were studied by differential scanning calorimetry (DSC). For the samples that were not cured completely, broad exothermic peaks at around 125°C were obtained in the DSC thermograms. The glass‐transition temperatures for completely cured samples were 110–120°C. The mechanical properties of the samples were determined from tensile and three‐point bending tests. The elastic modulus was highest for samples obtained by the conventional method with a 30‐min curing period. However, the bending modulus was highest for 7‐min cured samples in a 700‐W microwave. The mechanical strengths of the 700‐W output were higher than those at 500 W. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 251–256, 2003  相似文献   

13.
A poly(methyl methacrylate)‐intercalated graphite oxide/poly(methyl methacrylate) nanocomposite was prepared by emulsion polymerization of methyl methacrylate in the presence of graphite oxide (GO). GO was synthesized by the oxidization of natural graphite powder with KMnO4 in concentrated sulfuric acid. The functional groups and microstructure of the oxidized graphite and the composite were carefully characterized by use of X‐ray diffraction, infrared, transmission electron microscopy, and elemental analysis. The electrical conductivity and mechanical properties were also measured. Polym. Eng. Sci. 44:2335–2339, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Using the interfacial gel polymerization method, a heat‐resistant gradient‐index polymer optical fiber (GI POF) was developed based on the copolymer of methyl methacrylate (MMA) and N‐isopropylmaleimide (IPMI) as the matrix material and bromobenzene (BB) as dopant. The gradient distribution of IPMI in the GI POF rod was determined by element analysis. IPMI had great advantage in improving glass transition temperature (Tg) and forming a gradient‐index profile. There was a significant enhancement in the heat‐resistant property in comparison with a conventional GI POF rod. The combination of high thermal stability and easy fabrication makes the novel BB–IPMI–MMA system very suitable for heat‐resistant GI POF. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 280–283, 2003  相似文献   

16.
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) (PBSA) reinforced by poly(lactic acid) (PLA) fibers were developed by hot compression and characterized by Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analyzer, and tensile testing. The results show that PBSA and PLA are immiscible, but their interface can be improved by processing conditions. In particular, their interface and the resulting mechanical properties strongly depend on processing temperature. When the temperature is below 120 °C, the bound between PBSA and PLA fiber is weak, which results in lower tensile modulus and strength. When the processing temperature is higher (greater than 160 °C), the relaxation of polymer chain destroyed the molecular orientation microstructure of the PLA fiber, which results in weakening mechanical properties of the fiber then weakening reinforcement function. Both tensile modulus and strength of the composites increased significantly, in particular for the materials reinforced by long fiber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43530.  相似文献   

17.
In this work, poly(methyl methacrylate) (PMMA)-CdSe/ZnS quantum dots (QDs) nanocomposite fibers were fabricated via a simple electrospinning method. The parameters including concentration of PMMA, feed rate, applied voltage and working distance between the needle tip and the fiber collecting electrode were investigated and optimized to acquire large quantity, uniform and defect-free PMMA and its QD nanocomposite fibers. The surface morphology of the fibers was characterized by scanning electron microscopy (SEM), while the fluorescence emission characteristics of the polymer nanocomposite (PNC) fibers were analyzed with fluorescence microscopy. The thermal properties of the PMMA-QDs PNC fibers were explored by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). In comparison to the pristine PMMA fibers, the PNC fibers with only 0.1 wt% QD loading showed an improved thermal stability by 15 °C for the midpoint and onset degradation temperature. Surface chemical structure and functionalities were probed by a combination of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). New vibration bands were observed in the PNC fibers in the ATR-FTIR spectra, while the binding energy for both high resolution C 1s and O 1s spectra in the PNC fibers showed an apparent shift toward lower field. Rheological studies revealed a pseudoplastic behavior of both pristine PMMA and PMMA-QDs solutions. Moreover, the formed nanoporous PMMA-QDs fiber media exhibited an excellent biocompatibility as evidenced by the model Chinese hamster ovary (CHO) cell culturing test. The CHO cells demonstrated good adhesion, growth and viability in the reported testing.  相似文献   

18.
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers  相似文献   

19.
The thermal and mechanical properties of poly(methyl methacrylate) prepared at different curing times were studied using DSC, TGA, tensile, and three-point bending test methods. The molecular weights of the polymer samples were determined from the viscosity measurements. The curing time applied for two different commercial materials, manufactured for dental use, ranged from 15 to 180 min. The samples cured for 15 and 20 min were soluble in chloroform completely, but the others were partially soluble. The insoluble fraction increased with curing time but the molecular weight of the soluble fraction remained constant. DSC thermograms showed further curing of the samples cured for 15 and 20 min. After curing for 180 min and/or annealing at room temperature for about 13 months, the samples were completely crosslinked. The characteristic values obtained from the tensile and the three-point bending tests were similar for samples cured at different times. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1409–1417, 1998  相似文献   

20.
The poly(poly(ethylene glycol) methyl ether methacrylate)‐ (PPEGMA)‐grafted bamboo fiber (BF) (BF@PPEGMA) was successfully synthesized via the esterification and atom transfer radical polymerization (ATRP) methods. The poly(butylenes succinate) (PBS) matrix‐based composites including BF and BF@PPEGMA were prepared by a twin‐screw extruder. The structure, morphology, as well as the properties of BF@PPEGMA and composites was investigated. The results indicated that PPEGMA was successfully grafted onto the BF surfaces, making BF surfaces rough and less thermally stable. The BF@PPEGMA showed of stronger interactions with PBS matrix than pristine BF, leading to the improvement of tensile modulus, tensile strength, and elongation at break of the composites. The PBS/BF@PPEGMA composites absorbed less water than PBS/BF composites due to the existence of less content of hydroxyl groups after surface modification. Incorporation of BF and BF@PPEGMA facilitated the crystallization of PBS at higher temperatures, leading to formation of regular spherulites without appearance of transcrystallization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号