首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

2.
The solid polymeric nanocomposite electrolyte (SPNE) films based on the blend of amorphous poly(methyl methacrylate) (PMMA) and semicrystalline poly(ethylene oxide) (PEO) (PMMA:PEO = 80:20 wt %) doped with lithium perchlorate (LiClO4) salt and montmorillonite (MMT) clay nanofiller were prepared by classical solution cast, ultrasonic assisted solution cast and ultrasonication along with microwave irradiated solution cast followed by melt‐pressing methods. The X‐ray diffraction study of these electrolytes revealed the amorphous behavior with intercalated MMT structures. The suppressed crystallinity of PEO in the blend electrolyte complexes confirmed the existence of single discrete PEO chains confined within the PMMA domains. The dielectric relaxation spectroscopy of these materials was performed over the frequency range 20 Hz to 1 MHz, at ambient temperature. The presence of a singular relaxation peak in the loss tangent and electric modulus spectra of these electrolytes confirms a coupled cooperative chain segmental dynamics of the blend polymer owing to their miscible amorphous morphology. The behavior of transient complexes formed between the polymers functional groups, lithium cations and the intercalated MMT nanoplatelets was explored. The ambient temperature ionic conductivity of these electrolytes depends on the structural dynamics and the sample preparation methods. It is revealed that the presence of PEO in the PMMA matrix mainly governs the structural, dielectric, and ionic properties of these SPNE films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41311.  相似文献   

3.
BACKGROUND: Intercalated and exfoliated montmorillonite (MMT) clay structures in polymer matrices improve the thermal, mechanical, electrical and pharmaceutical properties of organic–inorganic materials. Poly(vinyl pyrrolidone) (PVP)–ethylene glycol oligomer (EGO) blends are biocompatible and non‐toxic materials. The dielectric characterization of MMT clay nano‐platelet colloidal suspensions in PVP–EGO blends is important in understanding the ionic conduction behaviour in many complex phenomena occurring in biological systems, and in selective membranes and their use in controlled drug release systems and in liquid electrolytes. RESULTS: An investigation using dielectric spectroscopy in the 20 Hz to 1 MHz frequency range of MMT clay nano‐platelet colloidal suspensions in PVP–EGO blends confirmed that the PVP segmental motion, ionic conduction relaxation time, electric double layer relaxation time and direct current electrical conductivity are significantly influenced by the clay concentration and EGO chain length. In these materials, ionic motion and PVP segmental dynamics are strongly coupled. Intercalation of EGO structures in clay galleries and exfoliation of clay platelets by adsorption of PVP–EGO structures on clay surfaces are governed by hydrogen bonding interactions between the carbonyl groups of PVP monomer units, the hydroxyl groups of EGOs and the hydroxylated aluminate surfaces of the MMT clay. CONCLUSION: The dielectric behaviour of intercalated and exfoliated structures of MMT clay nano‐platelet colloidal suspensions in PVP–EGO blends provides a convenient way to obtain liquid organic‐inorganic polymeric nanocomposite electrolytes with tailored ionic conduction properties. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

5.
Polyurethane/clay nanocomposites have been synthesized using Na+‐montmorillonite (Na+‐MMT)/amphiphilic urethane precursor (APU) chains that have hydrophilic polyethylene oxide (PEO) chains and hydrophobic segments at the same molecules. Nanocomposites were synthesized through two different crosslinking polymerization methods. One is UV curing of melt mixed APU/Na+‐MMT mixtures; the other is coalescence polymerization of APU/Na+‐MMT emulsions. These two kinds of composites had intercalated silicate layers of Na+‐montmorillonite by insertion of PEO chains in APU chains, which was confirmed by X‐ray diffraction measurement and transmission electron microscopy. These composite films also showed improved mechanical properties compared to pristine APU films. Although the two kinds of nanocomposites exhibited the same degree of intercalation and were synthesized based on the same precursor chains, these nanocomposite films had the different mechanical properties. Nanocomposites synthesized using APU/Na+‐MMT emulsions, having microphase‐separated structure, had greater tensile strength than those prepared with melt‐mixed APU/Na+‐MMT mixtures. Location of intercalated Na+‐MMT by PEO chains at the oil–water interface also could be confirmed by rheological behavior of the APU/Na+‐MMT/water mixture. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3130–3136, 2003  相似文献   

6.
The morphological, structural, dielectric and electrical properties of aqueous solution-cast prepared poly(ethylene oxide)–zinc oxide (PEO–ZnO) nanocomposite films have been investigated as a function of ZnO nanoparticle concentrations up to 5 wt%. Scanning electron microscopy (SEM) images of these films show that the morphology of pristine PEO aggregated spherulites changes into fluffy, voluminous and highly porous with dispersion of ZnO nanoparticles into the PEO matrix. X-ray diffraction (XRD) study confirms that the crystalline phase of PEO greatly reduces at 1 wt% ZnO, and it again increases gradually with further increase of ZnO concentration. The dielectric relaxation spectroscopy (DRS) over the frequency range 20 Hz–1 MHz reveals that the real part of complex dielectric permittivity at audio frequencies decreases non-linearly whereas it remains almost constant at radio frequencies for these polymeric nanocomposites. Dispersion of nanosize ZnO particles into the PEO matrix reduces the values of dielectric permittivity which also exhibits a correlation with the dispersivity of ZnO nanoparticles. The relaxation peaks observed in the dielectric loss tangent and electric modulus spectra reveal that the electrostatic interactions of nanoscale ZnO particles with the ethylene oxide functional dipolar group of PEO monomer units decrease the local chain segmental dynamics of the polymer. Real part of ac conductivity spectra of these films have been analyzed by power law fit over the audio and radio frequency regions, respectively, and the obtained dc conductivity values for these regions differ by more than two orders of magnitude. The temperature dependent relaxation time and dc conductivity values of the nanodielectric material obey the Arrhenius relation of activation energies and confirm a correlation between dc conductivity and PEO chain segmental motion which is exactly identical to the characteristics of solid polymer electrolytes. Results imply that these nanocomposite materials can serve as low permittivity flexible nanodielectric for radio frequency microelectronic devices and also as electrical insulator for audio frequency operating conventional devices in addition to their suitability in preparation of solid polymer electrolytes.  相似文献   

7.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Polyamide 6 (PA6) nanocomposites based on epoxy resin‐modified montmorillonite (EP‐MMT) were prepared by melt processing using a typical twin‐screw extruder. X‐ray diffraction combined with transmission electron microscopy was applied to elucidate the structure and morphology of PA6/EP‐MMT nanocomposites, suggesting a nearly exfoliated structure in the nanocomposite with 2 wt % EP‐MMT (PA6/2EP‐MMT) and a partial exfoliated‐partial intercalated structure in PA6/4 wt %EP‐MMT nanocomposite (PA6/4EP‐MMT). The thermogravimetric analysis under air atmosphere was conducted to characterize the thermal–oxidative degradation behavior of the material, and the result indicated that the presence of EP‐MMT could inhibit the thermal‐oxidative degradation of PA6 effectively. Accelerated heat aging in an air circulating oven at 150°C was applied to assess the thermal–oxidative stability of PA6 nanocomposites through investigation of reduced viscosity, tensile properties, and chemical structure at various time intervals. The results indicated that the incorporation of EP‐MMT effectively enhanced the thermal–oxidative stability of PA6, resulting in the high retention of reduced viscosity and tensile strength, and the low ratio of terminal carboxyl group to amino group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40825.  相似文献   

9.
Polystyrene‐clay nanocomposite (PsCN) materials were synthesized and their properties of crystallinity, thermal behavior, and dielectric characteristics were investigated. A polymerizable cationic surfactant, [2‐(dimethylamino)ethyl]triphenylphonium bromide, was used for the intercalation of montmorillonite (MMT). The organophilic MMT was prepared by Na+‐exchanged MMT and ammonium cations of a cationic surfactant in an aqueous medium. Organophilic styrene monomers were intercalated into the interlayer regions of organophilic clay hosts followed by a free‐radical polymerization. Exfoliation to 2 wt % MMT in the polystyrene (PS) matrix was achieved as revealed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal properties by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were also studied. The dielectric properties of PsCNs in the form of film with clay loading from 1.0 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 25–70°C. A decreased dielectric constant and low dielectric loss were observed for PsCN materials. The dielectric response at low frequency that originated from dipole orientation was suppressed due to the intercalation of clay materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1368–1373, 2004  相似文献   

10.
Polyamide 6/montmorillonite (MMT) nanocomposites were prepared by melt compounding method comprising 1–7.5 wt % of Nanomer I.24 TL or 5 and 10 wt % of Cloisite 15A organically modified nanoclays. The composite samples were characterized by synchrotron X‐ray, thermal and FT‐IR spectroscopy methods looking for changes in the micro‐ and nanostructure of both PA6 matrix and MMT reinforcement as a function of the clay content and type. These data were discussed in conjunction with the mechanical properties of the respective nanocomposites. Generally, the Young's modulus was found to increase proportionally to the clay content being the highest in samples with strong aggregation of MMT at micron length scale. The tensile strength passed through a maximum at 2.5 wt % clay load presenting a homogeneous microstructure with almost no agglomeration. Increasing the amount of MMT produced less crystalline PA6 matrices, richer in γ‐PA6 polymorph and resulted in larger long spacings of PA6 due to expansion of both crystalline and amorphous domains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
Organo‐Montmorillonite (Org‐MMT)/maleic anhydride grafted polypropylene (PP‐g‐MAH)/polypropylene nanocomposites have been prepared by melt blending with twin‐screw extruder. The mechanical properties of the nanocomposites and the dispersion of Org‐MMT intercalated by the macromolecular chain were investigated by transmission electron microscopy and mechanical tests. The crystal properties of the nanocomposites have been tested by a differential scanning calorimeter. The thermal properties of the nanocomposites were investigated by thermo gravimetric analysis. The results show that not only the impact property but also the tensile property and the bending modulus of the system have been increased evidently by the added Org‐MMT. The Org‐MMT has been dispersed in the matrix in the nanometer scale. With the addition of the Org‐MMT, the melting point and the crystalling point of the nanocomposites increased; the total velocity of crystallization of the nanocomposites also increased. Thermal stability of the nanocomposites is increased by the filled Org‐MMT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2875–2880, 2006  相似文献   

12.
Zhiqi Shen  Yi-Bing Cheng 《Polymer》2002,43(15):4251-4260
Polymer-clay nanocomposites of poly(ethylene oxide)/Na-montmorillonite (PEO/MMT) and PEO/organo-modified bentonite (B34) systems prepared via solution intercalation and melt intercalation have been compared by X-ray diffraction and Fourier transform infrared (FTIR) analysis. The gallery size of solution-intercalated hybrids in both PEO/MMT and PEO/B34 systems increases with PEO content up to a plateau level at 15%. However, the gallery size of melt-intercalated PEO/MMT and PEO/B34 hybrid remains the same regardless of the PEO concentration. FTIR analysis shows no difference in spectrum of samples prepared by solution intercalation compared to melt intercalation. The PEO conformation in the PEO/clay intercalated hybrids is concluded to be a distorted helical structure.  相似文献   

13.
Summary: Hydrogenated acrylonitrile butadiene rubber (HNBR) was melt compounded with montmorillonite (MMT) and organophilic modified MMTs prior to sulfur curing. In contrast to the micro‐composite formation resulting from the compounding of the HNBR and pristine MMT, the modified MMTs (i.e., octadecylamine: MMT‐ODA, octadecyltrimethylamine: MMT‐ODTMA, methyltallow‐bis(2‐hydroxyethyl) quaternary ammonium: MMT‐MTH intercalants) produced nanocomposites. It was found that the organoclay with primary amine intercalant (cf. MMT‐ODA) gave confined structures along with the exfoliated/intercalated structures. This was traced to its reactivity with the curatives. By contrast, the organoclays containing less reactive quaternary ammonium compounds (cf. MMT‐ODTMA, MMT‐MTH) were exfoliated and intercalated based on X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results. The hydroxyl functional groups of the MMT‐MTH supported the clay dispersion. The better adhesion between MMT‐MTH and HNBR was explained by hydrogen bonding between the hydroxyl groups of the intercalant and the acrylonitrile group of the HNBR matrix. This HNBR/MMT‐MTH nanocomposite showed the best mechanical properties as verified by tensile mechanical tests and dynamic mechanical thermal analysis (DMTA). The high tensile strength along with the high elongation at break for the rubber nanocomposites were attributed to the ability of the ‘clay network’ to dissipate the input energy upon uniaxial loading.

Scheme of failure development in rubber/organoclay mixes with poor (a) and good (b) dispersion of the clay layers.  相似文献   


14.
Poly(ethylene terephthalate) (PET) nanocomposites with single‐walled carbon nanotubes (SWNTs) have been prepared by a simple melt compounding method. With increasing concentration (0–3 wt %) of SWNTs, the mechanical and dynamic mechanical properties improved, corresponding to effective reinforcement. Melt rheological characterization indicated the effective entanglements provided by SWNTs in the melt state as well. Thermogravimetric analysis suggested no influence of SWNTs on the thermal stability of PET. Electrical conductivity measurements on the composite films pointed out that the melt compounded SWNTs can result in electrical percolation albeit at concentrations exceeding 2 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Double‐modified montmorillonite (MMT) was first prepared by covalent modification of MMT with 3‐aminopropyltriethoxysilane and then intercalation modification by tributyl tetradecyl phosphonium ions. The obtained double‐modified MMT was melt compounded with polypropylene (PP) to obtain nanocomposites. The dispersion of the double‐modified MMT in PP was found to be greatly improved by the addition of PP‐graft‐maleic anhydride (PP‐g‐MA) as a “compatibilizer,” whose anhydride groups can react with the amino groups on the surface of the double‐modified MMT platelets and thus improve the dispersion of MMT in PP. Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, and tensile test were used to characterize the structure of the double‐modified MMT, morphology, and the thermal and mechanical properties of the nanocomposites. The results show that PP‐g‐MA promotes the formation of exfoliated/intercalated morphology and obviously increases the thermal properties, tensile strength, and Young's modulus of the PP/double‐modified MMT nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Hybrid latices of poly(styrene‐co‐butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer‐MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A novel aromatic amine organo‐modifier synthesized in our previous work was used to treat montmorillonite (MMT) and the organo‐modified MMT was used to prepare poly(etherimide) (PEI)/MMT nanocomposites by a melt intercalation method. MMT treated by this amine exhibited large layer‐to‐layer spacing and a high ion‐exchange ratio (>95%). The nanocomposites were characterized with X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical analysis, a universal tester, thermogravimetric analysis, and by differential scanning calorimetry. The results of XRD and TEM showed that the nanocomposites formed exfoliated structures even when the MMT content was 10 wt %. When the MMT content was below 3 wt %, the PEI/MMT nanocomposites were strengthened and toughened at the same time. The nanocomposites also showed marked decreases in coefficient of thermal expansion and solvent uptake. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1857–1863, 2003  相似文献   

20.
Polystyrene–clay nanocomposite (PsCN) materials have been prepared by a free radical polymerization process. Montmorillonite (MMT), modified by two different organics, was investigated: one contains a short chain and three benzyl groups on the ammonium ion (DAETPB), while the other contains a long chain (HTAC). The organic modification determines the extent of exfoliation or intercalation of the materials. Exfoliation is more likely to occur using HTAC, as then the gallery of clay has been opened more due to the long chain structure. Exfoliation of MMT in polystyrene (PS) matrix was revealed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to confirm the increased thermal stability of these PsCN materials. Dielectric properties of polystyrene‐clay nanocomposites, in the form of film with clay loading from 1.0 to 5.0 wt %, were measured under frequencies of 100 Hz~1 MHz at 25~70°C. Decreased dielectric constant and low dielectric loss were observed for PsCN materials. Especially, the decrease of dielectric constant was found to be related to the extent of exfoliation of clay. It is recognized that the confinement effect of clay results in the suppression of the dielectric response of the nanocomposite materials at low frequency. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2402–2410, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号