首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer composites based on poly(methyl methacrylate) (PMMA)/carboxylic acid group functionalized multiwall carbon nanotubes (MWCNT) were prepared by the ex situ and in situ techniques with 0.05% loading by weight. Composite films were fabricated by solvent casting method. Electrical conductivity of the composites as well as of the neat PMMA polymer was measured in the temperature range 333 K to 423 K. Neat PMMA samples prepared by the same method showed complete insulating behavior. Ex situ technique leads to a lower value of percolation threshold. Infrared spectroscopy was used to analyze the effect of functionalization of MWCNT on the interfacial bonding of PMMA and MWCNT. Thermogravimetric analysis revealed that the maximum degradation temperature has been shifted to higher region for in situ composites compared to PMMA itself—and the ex situ composites indicated better thermal stability. X‐ray diffraction study of composites also indicates that in situ composites functionalization incorporated MWCNT particles in the polymer chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Poly(butylene terephthalate) (PBT) composites containing multiwalled carbon nanotubes (MWCNTs) were prepared using a melt‐blending process and used to examine the effects on the composite structure and properties of replacing PBT with acrylic acid‐grafted PBT (PBT‐g‐AA). PBT‐g‐AA and multihydroxyl‐functionalized MWCNTs (MWCNTs‐OH) were used to improve the compatibility and dispersibility of the MWCNTs within the PBT matrix. The composites were characterized morphologically using transmission electron microscopy, and chemically using Fourier transform infrared, solid‐state 13C NMR and UV‐visible absorption spectroscopy. The antibacterial and electrical conductivity properties of the composites were also evaluated. MWCNTs or MWCNTs‐OH enhanced the antibacterial activity and electrical conductivity of the PBT/MWCNT or PBT‐g‐AA/MWCNTs‐OH composites. The functionalized PBT‐g‐AA/MWCNTs‐OH composites showed markedly enhanced antibacterial properties and electrical conductivity due to the formation of ester bonds from the condensation of the carboxylic acid groups of PBT‐g‐AA with the hydroxyl groups of MWCNTs‐OH. The optimal proportion of MWCNTs‐OH in the composites was 1 wt%; in excess of this amount, the compatibility between the organic and inorganic phases was compromised. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Poly(butylene succinate) (PBS)/pristine raw multiwalled carbon nanotube (MWCNT) composites were prepared in this work via simple melt compounding. Morphological observations indicated that the MWCNTs were well dispersed in the PBS matrix. Moreover, the incorporation of MWCNTs did not affect the crystal form of PBS as measured by wide‐angle X‐ray diffraction. The rheology, crystallization behaviors, and thermal stabilities of PBS/MWCNT composites were studied in detail. Compared with neat PBS, the incorporation of MWCNTs into the matrix led to higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), shear thinning behaviors, and lower damping factor (tan δ) at low frequency range, and shifted the PBS/MWCNT composites from liquid‐like to solid‐like, which affected the crystallization behaviors and thermal stabilities of PBS. The presence of a very small quantity of MWCNTs had a significant heterogeneous‐nucleation effect on the crystallization of PBS, resulting in the enhancement of crystallization temperature, i.e., with the addition of 0.5 wt % MWCNTs, the values of Tc of PBS/MWCNT composites could attain to 90°C, about 6°C higher than that of neat PBS, whereas the values of Tc increased slightly with further increasing the MWCNTs content. The thermogravimetric analysis illustrated that the thermal stability of PBS was improved with the addition of MWCNTs compared with that of neat PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
We present the first investigation of photoisomerization of the azo‐based electroactive polyimide (PI)/amino‐functionalized multiwalled carbon nanotube (MWCNT) composite electrode on the effect of electrochemical sensing for ascorbic acid (AA). First, MWCNTs were grafted with 4‐aminobenzoic acid in a medium of polyphosphoric acid/phosphorous pentoxide to obtain MWCNTs functionalized with 4‐aminobenzoyl groups (AF‐MWCNTs). Subsequently, photoactive and electroactive PI/AF‐MWCNT composites (PEPACCs) were prepared by introducing pendant conjugated oligoaniline (amino‐capped aniline trimer) in the main chain and azobenzene chromophores in the side chain, in the presence of AF‐MWCNTs. Photoactive and electroactive PI (PEPI) and PEPACCs were characterized by 1H NMR spectra, UV?visible absorption spectra, cyclic voltammetry (CV) and transmission electron microscopy. The CV study shows that the PEPACCs have higher electroactivity than PEPI. The redox and reversible photoisomerization (i.e. cis ? trans) behavior of PEPACCs was analyzed by in situ monitoring through systematic studies of CV and UV?visible spectroscopy. The light of the UV lamp was 365 nm. It should be noted that the sensor constructed from a trans‐PEPACC‐modified carbon‐paste electrode (CPE) demonstrated a higher electrocatalytic activity by 2.75‐fold and 1.12‐fold towards the oxidation of AA compared with those constructed using a PEPI‐ and cis‐PEPACC‐modified CPE, respectively. The detection limit of the trans‐PEPACC‐modified electrode was 1.73‐fold and 1.70‐fold lower than that of PEPI‐ and cis‐PEPACC‐modified CPE. Moreover, the differential pulse voltammetry data showed that the trans‐PEPACC‐modified electrode had high electrochemical sensing ability for the determination of AA, dopamine and uric acid. © 2014 Society of Chemical Industry  相似文献   

5.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Introduction of hydrogen bonding sites onto multi‐walled carbon nanotubes (MWCNTs) included carboxylic acid, amide‐amine, and novel amide‐urea MWCNTs for the formation of homogenous polyurethane composites. Acid oxidation and subsequent derivatization introduced hydrogen bonding functionality onto MWCNTs to reveal the effect of surface functionalization on mechanical properties in a 45 wt% hard segment polyurethane matrix. Raman spectroscopy showed an increase in the D/G peak ratio, which indicated successful oxidation, and X‐ray photoelectron spectroscopy also revealed elemental compositions that supported each step of the functionalization strategy. Thermogravimetric analysis supported functionalization with an increase in percent weight loss for each functionalization, and the MWCNT surface functionalization determined pH‐dependent dispersibility. The nonfunctionalized MWCNT composites showed poor dispersion with transmission electron microscopy, and in sharp contrast, the functionalized composites displayed homogenous dispersions. Tensile testing revealed improved stress at break in the functionalized MWCNT composites at low loadings due to homogenous dispersion. POLYM. COMPOS., 37:1425–1434, 2016. © 2014 Society of Plastics Engineers  相似文献   

7.
Conjugated aromatic oligo(azomethine) derivatives (oligo‐AMs) were prepared by the condensation of terephtaldehyde 4,4′‐diformylbiphenyl bis(4‐formylphenyl) ether and p‐phenylene diacrolein with 1,4‐diaminobenzene at room temperature. The structures of the synthesized oligomers were characterized by FTIR, 1H‐NMR, TGA–DTG, UV–vis absorption spectra, and elemental analyses. Additionally, in this study, the oligomer composites were obtained using the carbon material (char) derived from the 450°C pyrolysis of waste polyethylene terephthalates. The conductivity measurements of the produced composites were determined at 24‐h periods by doping with iodine vapor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Poly(N‐vinylcarbazole) (PVK) composites containing different concentrations of multiwalled carbon nanotube (MWCNT) were synthesized through the oxidative polymerization of N‐vinylcarbazole with ferric chloride. The synthesized composites were characterized using Fourier transform infrared spectroscopy, ultraviolet‐visible spectra, and thermogravimetric analysis. A honeycomb‐patterned film was fabricated by casting the PVK–MWCNT composite solution under humid conditions. The morphology of the honeycomb‐patterned films in the PVK–MWCNT polymer composites and the dependence of its pore diameter and pore height on MWCNT concentration were analyzed using scanning electron microscopy. The honeycomb‐patterned films were treated at 150, 250, 400, and 490°C to study the arrangement of MWCNTs in the patterned films and to measure the DC conductivity depending on the calcination temperature. DC conductivity of the patterned films was increased by increasing the concentration of MWCNT in the composites and in the increased pretreatment temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Multi-walled carbon nanotubes (MWCNTs), titanium(IV) isopropoxide (TIP) and potassium hexachloroplatinate(IV) (K2PtCl6) were used for the preparation of Pt/MWCNT/TiO2 composites. The composites were comprehensively characterized by Brauer–Emett–Teller surface area, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and UV–vis absorption spectroscopy. The photoactivity of the prepared materials under UV irradiation was tested using the conversion of methylene blue (MB) in aqueous solution. According to the results of MB removal experiment, it can be considered that the MB removal effect of the Pt/MWCNT/TiO2 composites is affected by two kinds of effects: adsorption effect by MWCNTs and photocatalytic effect by TiO2. Finally, the photocatalytic effect increases due to photo-induced-electron absorption effect by MWCNTs and electron trap effect by Pt metal.  相似文献   

11.
The effect of processing method and condition on the dispersion status of multiwalled carbon nanotubes (MWCNTs), and mechanical properties of the MWCNT/polyamide 6 (PA6) composites are investigated. Different melt processing conditions are used to dilute the master batch produced by melt process or in situ polymerization. Both MWCNTs and carboxyl group functionalized MWCNTs (MWCNTs‐COOH) are compounded with PA6 at different loadings (0.1, 0.25, 0.5, and 0.75 wt %) to study the effect of chemical modification of MWCNTs on the mechanical properties of the final composites. It is demonstrated that chemical modification of MWCNTs has a positive effect on the strength of the composites as an increase of 5–10 MPa was observed. More importantly, a near 5 MPa increase in strength and more importantly, a maximum of 138% increase in strain at break were observed for the composites produced by in situ polymerization, indicating a toughening and strengthening effect of CNT on the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Poly(p‐phenylene benzobisoxazole) (PBO) fiber has received great interest because of its excellent mechanical properties and good thermal stability. The objective of this study was to expose degradation mechanism of PBO under neutral and acidic conditions by molecular mass and Fourier transform infrared (FTIR) spectroscopy. Results were not consistent with the classic degradation mechanism, which indicates that degradation should occur through the ring opening and chain scission of the benzoxazole ring. The FTIR absorption spectra of PBO suggested that the o‐hydroxy amide linkage (the open ring structure) was present in the PBO molecule chain to some extent because of the incomplete polymerization. Further investigation showed that hydrolysis might occur in the open ring section during hydrolytic degradation. Based on the experimental data, a new degradation mechanism was proposed. It suggests that, in the early and middle stages, hydrolysis occurred primarily in the o‐hydroxy amide linkage of the open ring. The concentration of the o‐hydroxy amide structure determined the speed of degradation of PBO. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) composites were prepared by in situ polymerization. To improve the dispersion of MWCNTs in the PET matrix, functionalized MWCNTs having acid groups (acid‐MWCNTs) and acetic groups (acetic‐MWCNTs) on their surfaces were used. The functional groups were confirmed by infrared spectrometry. Scanning electron microscopy showed that acetic‐MWCNTs had a better dispersion in the PET matrix than pristine MWCNTs and acid‐MWCNTs. A reaction between PET and acetic‐MWCNTs was confirmed by a shift of the Raman G band to a higher frequency and an increase of the complex viscosity in the rheological properties. The composites containing functionalized MWCNTs showed a large increase in their tensile strengths and moduli. The values of the strengths and moduli of the PET/acetic‐MWCNT composites were higher than those of the PET/acid‐MWCNT composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
A multiwalled carbon nanotubes (MWCNTs) were carboxylated after refluxing with sulfuric and nitric acids. These attached carboxylic acid groups were further condensated with o‐phenylene diamine into amide catalyzed by dicyclohexyl carbodiimide (DCC). The obtained amidized MWCNTs were in situ‐polymerized with aniline monomers to graft a conducting polyaniline (PANI) onto MWCNT (ES‐g‐MWCNTs) through the polymerization occurring in the ortho‐ and meta‐positions. The reduced conductivity of the MWCNT after carboxylation can be recovered after grafting with PANI, which owns a strong λmax at the near infrared region due to the extended conjugation from MWCNTs to PANI. Transmission electronic microscopic pictures show a gradual broadening of the MWCNT diameter after carboxylation, amidization, and polymerization. The weight loss from the thermogravimetric thermograms due to the carboxylations of MWCNTs, amidized MWCNTs, and the PANI grafted MWCNTs into CO2 can be used to estimate the degree of carboxylation, amidization, and grafting of PANI. The degree of carboxylation of MWCNT calculated from ESCA spectrum is around 23% close to that estimated from TGA thermogram. The doping level of redoped PANI‐grafted MWCNT is found to be 27.78% much less than the maximum 50% of neat PANI. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Multi‐walled carbon nanotube was modified with polymethyl methacrylate (MWCNT‐PMMA) by in situ solution radical polymerization in the presence of 2,2′‐Azobis (isobutyronitrile) as an initiator. The products with different addition of methyl methacrylate (MMA) were pressed into slices to prepare specimens for electrical conductivity testing. It was found that the MWCNT‐PMMA nanocomposites demonstrate excellent electrical conductivity. To investigate the microsphere morphology and the colloidal surfactant of MWCNTs in MWCNT‐PMMA composites, samples were submitted to scanning electron microscopy and transmission electron microscopy. The thermogravimetric analysis of the prepared composites confirmed that MWCNTs as a thermal stabilizer for PMMA, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage. Two series of poly(lactic acid) (PLA) based biocomposites with different MMA additions and MWCNT‐PMMA composites contents were prepared with twin‐screw extruding and injection molding. The results show the mechanical properties changed a little with the MMA and MWCNT‐PMMA composites contents increasing, which suggested the well compatibility between MWCNT‐PMMA composites and PLA. POLYM. COMPOS., 37:503–511, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Polypyrrole (PPy) composites were prepared with both unmodified and amine‐modified multiwalled carbon nanotubes (MWCNTs) in the presence and absence of barium titanate (BaTiO3) by in situ oxidative polymerization. A uniform coating of PPy on the MWCNTs and BaTiO3 surfaces was confirmed by field emission scanning electron microscopy and high‐resolution transmission electron microscopy images. The structure of the pure and amine‐modified MWCNTs were identified by Fourier transform infrared spectroscopy. The incorporation of BaTiO3 enhanced the thermal stability and capacitance properties of the composites. The maximum specific capacitance and energy density values found for the PPy/amine‐modified MWCNT/BaTiO3 composites were 155.5 F/g and 21.6 W h/kg, respectively, at a scan rate of 10 mV/s. The maximum power density was found to be 385.7 W/kg for the same composite at a scan rate of 200 mV/s. Furthermore, the impedance spectra of the composites showed moderate capacitive behavior. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Enhanced strain‐induced crystallization (SIC) behavior in isoprene rubber/multiwall carbon nanotube (IR/MWCNT) nanocomposites was analyzed in terms of structural orientation during uniaxial deformation. In situ synchrotron wide‐angle X‐ray diffraction and small‐angle X‐ray scattering (SAXS) reveal the molecular orientation in IR/MWCNT composites at different scales. The inclusion of MWCNTs leads to a decrease in the molecular orientation at small strain due to the promotion of SIC. Meanwhile, the presence of MWCNTs induces a large‐scale orientation within the vulcanized rubber network based on SAXS results. Considering the heterogeneous nature of the vulcanized network, the nucleation process during SIC is discussed from the viewpoint of thermodynamics. The oriented large‐scale structure in IR/MWCNT composites is composed of local rubber chains stretched up MWCNTs, from which the additional nuclei are induced. By forming a bound rubber layer around MWCNTs through attractive interactions, MWCNTs can amplify the local strain of rubber segments and form a highly oriented large‐scale structure, but without altering the overall molecular orientation level. The evolution of detailed structural orientation in MWCNT‐filled rubber composites during deformation is revealed for the first time. © 2017 Society of Chemical Industry  相似文献   

18.
Multiwalled carbon nanotube (MWCNT)‐filled polycarbonate (PC)/styrene–acrylonitrile (SAN) blends with a wide range of blend compositions were prepared by melt mixing in a rotational rheometer, and the effect of SAN on the electrical properties of the PC/MWCNT composites was studied. The structure/electrical property relationship was investigated and explained by a combination of MWCNT localization and blend morphology. Transmission electron micrographs showed selective localization of MWCNTs in the PC phase, regardless of the blend morphology. When the SAN concentration was 10–40 wt %, which corresponded to sea‐island (10–30 wt %) and cocontinuous (40 wt %) blend morphologies (PC was continuous in both structures), the electrical resistivity decreased with increases in the SAN content. The concept of an effective volume concentration of MWCNTs was used to explain this effect. When the SAN concentration was 70 wt % or higher, the electrical resistivity was very high because MWCNTs were confined in the isolated PC particles. In addition, SAN was replaced by other polymers [polystyrene, methyl methacrylate/styrene, and poly(methyl methacrylate)]; these yielded similar blend morphologies and MWCNT localization and showed the generality of the concept of effective concentration in explaining a decrease in the electrical resistivity upon the addition of a second polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Nanomaterials gained great importance on account of their wide range of applications in many areas. Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, gas barrier, and tensile properties and can therefore be used for the development of a new generation of composite materials. Functionalized multiwalled carbon nanotubes (MWCNTs) reinforced Polyacrylonitrile‐co‐starch nanocomposites were prepared by in situ polymerization technique. The structural property of PAN‐co‐starch/MWCNT nanocomposites was studied by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The conductivity, tensile strength, and thermal properties of nanocomposites were measured as a function of MWCNT concentrations. The thermal stability, conductivity, and tensile strength of PAN‐co‐starch/MWCNT nanocomposites were improved with increasing concentration of MWCNTs. Oxygen barrier property of PAN‐co‐starch/MWCNT nanocomposites was calculated and it was found that, the property was reduced substantially with increase of MWCNTs proportion. The synthesized PAN‐co‐starch/MWCNT nanocomposites may used for electrostatically dissipative materials, aerospace or sporting goods, and electronic materials. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号