首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fabricated by high-pressure or supercritical CO2 gas dissolution foaming process, nanocellular and microcellular polymer foams based on poly(methyl methacrylate) (PMMA homopolymer) present a controlled nucleation mechanism by the addition of a methylmethacrylate–butylacrylate–methylmethacrylate block copolymer (MAM), leading to defined nanocellular morphologies templated by the nanostructuration of PMMA/MAM precursor blends. Influence of the CO2 saturation temperature on the foaming mechanism and on the foam structure has been studied in 90/10 PMMA/MAM blends and also in the neat (amorphous) PMMA or (nanostructured) MAM polymers, in order to understand the role of the MAM nanostructuration in the cell growth and coalescence phenomena. CO2 uptake and desorption measurements on series of block copolymer/homopolymer blend samples show a competitive behavior of the soft, rubbery, and CO2-philic block of PBA (poly(butyl acrylate)) domains: fast desorption kinetics but higher initial saturation. This competition nevertheless is strongly influenced by the type of dispersion of PBA (e.g. micellar or lamellar) and a very consequent influence on foaming.CO2 sorption and desorption were characterized in order to provide a better understanding of the role of the block copolymer on the foaming stages. Poly(butyl acrylate) blocks are shown to have a faster CO2 diffusion rate than poly(methyl methacrylate) but are more CO2-philic. Thus gas saturation and cell nucleation (heterogeneous) are more affected by the PBA block while cell coalescence is more affected by the PMMA phases (in the copolymer blocks + in the matrix).  相似文献   

2.
A strategy of CO2-assisted extrusion foaming of PMMA-based materials was established to minimize both foam density and porosities dimension. First a highly CO2-philic block copolymer (MAM: PMMA-PBA-PMMA) was added in PMMA in order to improve CO2 saturation before foaming. Then the extruding conditions were optimized to maximize CO2 uptake and prevent coalescence. The extruding temperature reduction led to an increase of pressure in the barrel, favorable to cell size reduction. With the combination of material formulation and extruding strategy, very lightweight homogeneous foams with small porosities have been produced. Lightest PMMA micro foams (ρ = 0.06 g cm−3) are demonstrated with 7 wt% CO2 at 130°C and lightest blend micro foams (ρ = 0.04 g cm−3) are obtained at lower temperature (110°C, 7.7 wt% CO2). If MAM allows a reduction of Tfoaming, it also allows a much better cell homogeneity, an increase in cell density (e.g., from 3.6 107 cells cm−3 to 2 to 6 108 cells cm−3) and an overall decrease in cell size (from 100 to 40 μm). These acrylic foams produced through scCO2-assisted extrusion has a much lower density than those ever produced in batch (ρ ≥ 0.2 g cm−3).  相似文献   

3.
Highly CO2-philic nanoparticles, octatrimethylsiloxy polyhedral oligomeric silsesquioxanes (POSS) are used to increase the affinity of poly(methyl methacrylate) (PMMA) to CO2 in supercritical carbon dioxide (scCO2) foaming, thus to improve its foaming performance and the foam morphology. PMMA and PMMA-POSS composite foams were produced based on the two-factorial design, at the upper and lower experimental conditions of pressure, temperature, processing time, and venting rate. The foams of PMMA-5% POSS composites exhibited smaller average pore sizes and higher pore densities than neat PMMA and PMMA-0.5% POSS composites. The smallest average pore diameter (0.3 μm) and the highest pore density (6.33 × 1012 cm−3) were obtained with this composite processed at 35°C, 32 MPa, for 24 h and depressurized with fast-venting rate (0.4 MPa/s). ScCO2 processing decreased the density of the polymer by more than 50%.  相似文献   

4.
When polymer blends are foamed by physical foaming agents, such as CO2 or N2, not only the morphology and viscosity of the blend polymers but also the solubility and diffusivity of the physical foaming agents in the polymers determine the cellular structure: closed cell or open cell and monomodal or bimodal. The foam of poly(ethylene glycol) (PEG)/polystyrene (PS) blends shows a unique bimodal (large and small) cellular structure, in which the large‐size cells embrace a PEG particle. Depending on the foaming condition, the average size of the large cells ranges from 40 to 500 μm, whereas that of small cells becomes less than 20 μm, which is smaller than that of neat PS foams. The formation mechanism of the cellular structure has been investigated from the viewpoint of the morphology and viscosity of the blend polymer and the mass‐transfer rate of the physical foaming agent in each polymer phase. The solubility and diffusivity of CO2, which determine the mass‐transfer rate of CO2 from the matrix to the bubbles, were measured by a gravimetric measurement, that is, a magnetic suspension balance. The solubility and diffusivity of CO2 in PS differed from those in PEG: the diffusion coefficient of CO2 in PEG at 110°C was 3.36 × 10?9 m2/s, and that in PS was 2.38 × 10?10 m2/s. Henry's constant in PEG was 5600 cm3 (STP)/(kg MPa) at 110°C, and that in PS was 3100 cm3 (STP)/(kg MPa). These differences in the transport properties, morphology of the blend, and CO2‐induced viscosity depression are the control factors for creating the unique cellular structure in PEG/PS blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1899–1906, 2005  相似文献   

5.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

6.
Processing of a high glass transition (Tg) polymer such as polyethersulfone (PES; Tg = 225°C) poses a challenge as it requires high processing temperatures or sometimes toxic solvents. In this work, we report of a facile process using superheated water (shH2O) and supercritical carbon dioxide (scCO2) co‐media. PES solids were foamed in the scCO2/shH2O co‐media or scCO2 alone in a batch process at different temperatures. The scCO2/shH2O produced a synergistic effect and achieved PES foams even at processing temperatures as low as 85°C below the nominal Tg; whereas, scCO2 alone required higher processing temperatures. Moreover, the scCO2/shH2O co‐media produced highly porous PES foams that were at least 23% higher in porosity than what was obtained using scCO2 alone. In addition, the scCO2/shH2O produced open cell foams at some processing conditions; whereas, scCO2 produced closed cell morphologies. Since both CO2 and H2O are innocuous, this approach has potential for use in the preparation of ultrafiltration membranes, which currently require the use of toxic solvents for their fabrication by way of the phase inversion process. Moreover, the use of scCO2/shH2O is a cost‐effective approach for the processing of high Tg polymers at significantly lower temperatures. POLYM. ENG. SCI., 58:1108–1114, 2018. © 2017 Society of Plastics Engineers  相似文献   

7.
8.
High performance thermoplastic blends based on polyethersulfone (PES) and poly(ethylene 2,6 naphthalate) (PEN) were foamed with supercritical CO2 to develop high‐performance foams with improved heat deflection temperature, extended processing range, and controlled cellular morphology. The cellular morphology resulted to be strongly influenced by the initial morphology of the blend. The presence of small amount of PES as dispersed phase in PEN based blends acted as blowing agent reservoir and allowed to extend the processing temperature range for obtaining low density foams. The presence of PEN droplets in PES based systems extended the foaming temperatures towards lower values and allowed the development of a bimodal micro/nanocellular morphology at a foaming temperature 60°C lower than the PES glass transition temperature. Furthermore, the presence of PEN droplets compensated for the reduced capability of the host matrix to generate a fine and diffuse porosity at low foaming temperatures. POLYM. ENG. SCI., 55:1281–1289, 2015. © 2015 Society of Plastics Engineers  相似文献   

9.
An integrated process of melt polycondensation modification and foaming of poly(ethylene terephthalate) (PET) was performed in a high pressure vessel assisted by supercritical carbon dioxide (scCO2). ScCO2 was firstly employed to sweep PET melt, i.e., high pressure CO2 continuously flows through the vessel at a fixed flow rate to remove small molecules for higher molecular weight PET, then this modified PET melt was directly foamed through a rapid depressurization process using scCO2 as blowing agent. In this integrated process, PET with high melt strength after polycondensation modification could be foamed directly in molten state. Therefore, re-molten process of solid modified PET pellets was canceled to avoid its degradation and CO2 saturation time could be saved in foaming process, thus processing time could be shortened and energy efficiency could be improved. The influences of scCO2 sweeping treatment time, pressure and flow rate on properties of the modified PETs and cell morphologies of the foamed PETs were investigated respectively. The results showed that CO2 sweeping treatment could effectively enhance PET melt polycondensation modification process, which was superior to that of N2 treatment. PET foams with average cell diameter of 32–62 μm and cell density of 1 × 107 to 4 × 107 cells/cm3 have been obtained in the integrated process. Compared with the process of only foaming modified PET by scCO2 or performing scCO2 assisted modified PET further melt polycondensation process and scCO2 foaming process separately, this integrated process produced better cell morphology.  相似文献   

10.
Based on the existence of the pores in foamed polystyrene (PS), foamed‐non‐Fickian diffusion (FNFD) model was proposed, for the first time, to regress the desorption data obtained by gravimetric method. Results showed that FNFD model could accurately describe the diffusion behavior of CO2 out of foamed PS, and well predict the solubility of CO2 in foamed PS. The characterization of scanning electron microscopy indicated that there were abundant pores in the foamed PS, and the pores store most of CO2, which would diffuse in the pores, adsorb to the wall of the pores, penetrate across walls of the pores, diffuse in the matrix of PS, and desorb out of PS. The mass of CO2 in the pores of foamed PS was expressed as a function of foaming pressure and temperature according to foaming kinetics. Results showed that the values calculated by this function agreed well with the values obtained from the FNFD model. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45645.  相似文献   

11.
Use of supercritical carbon dioxide (scCO2) as a blowing agent to generate microcellular polymer foams (MPFs) has recently received considerable attention due to environmental concerns associated with conventional organic blowing agents. While such foams derived from amorphous thermoplastics have been previously realized, semicrystalline MPFs have not yet been produced in a continuous scCO2 process. This work describes the foaming of highly crystalline poly(vinylidene fluoride) (PVDF) and its blends with amorphous polymers during extrusion. Foams composed of neat PVDF and immiscible blends of PVDF with polystyrene exhibit poor cell characteristics, whereas miscible blends of PVDF with poly(methyl methacrylate) (PMMA) yield foams possessing vastly improved morphologies. The results reported herein illustrate the effects of blend composition and scCO2 solubility on PVDF/PMMA melt viscosity, which decreases markedly with increasing PMMA content and scCO2 concentration. Morphological characterization of microcellular PVDF/PMMA foams reveals that the cell density increases as the PMMA fraction is increased and the foaming temperature is decreased. This study confirms that novel MPFs derived continuously from semicrystalline polymers in the presence of scCO2 can be achieved through judicious polymer blending.  相似文献   

12.
Microcellular foaming of commodity amorphous polymers, poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) was studied in supercritical CO2 via a batch one-step process in the presence of block copolymers able to change their foaming behaviour and therefore the porous structures. Triblock (styrene-co-butadiene-co-methylmethacrylate SBM, methylmethacrylate-co-butylacrylate-co-methylmethacrylate MAM) terpolymers were blended to PS or PMMA by extrusion. They showed advantages compared to classical PS-PMMA polymer blends in terms of cell size control and reduction of cell size. Foaming is carried out on bulk injection molded samples which were saturated under high pressures of CO2 (300 bars) at different temperatures (25° C to 80 °C) and different depressurization rates (pressure drop rates from 150 bar/min to 12 bar/min). Very distinct cellular structures and densities were controlled by varying either the copolymer type or the foaming conditions (T,P). Cell sizes ranged from 0.2 μm to 200 μm, and densities from 0.30 g/cm3 to 1 g/cm3 in the polymers considered. Particularly, when triblock copolymers were able to self organize (nanostructuring) in a polymer matrix, they became phase separated at a nanometer level, presenting nanostructured polymers matrixes. To conclude the study, a possible nanostructuring mechanism is suggested based on the interplay between rubbery and highly CO2-philic blocks/rigid and less CO2-philic blocks. It is demonstrated that block copolymer additives are a good pathway towards micro and ultra microcellular supercritical CO2 foaming of amorphous polymers.  相似文献   

13.
In this study we investigate the solid-state batch foaming of polyetherimide (PEI) using sub-critical CO2 as a blowing agent. We report on the gas diffusion for various saturation pressures in this system. Foaming process characterization is reported detailing conditions used to create microcellular and nanocellular PEI foams of 40% and higher relative density. Gas sorption, foaming, and resultant morphologies are analyzed and compared to previously reported results on PEI thin films. It was found that equilibrium gas concentrations for PEI sheet begin to significantly exceed that of films for CO2 pressures above 3 MPa. A large solid-state foaming process window has been identified that allows for the creation of either microcellular or nanocellular structures at comparable density reductions. A transition from micro-scale cells to nano-scale cells was observed at gas concentrations in the range of 94–110 mg CO2/g PEI. Additionally, a hierarchical structure was observed which consisted of nanocellular structures internal to microcells. The PEI–CO2 system offers the unique opportunity to compare and contrast the bulk properties of nanofoams and microfoams.  相似文献   

14.
Specific pore structure is a vital essential for scaffolds applied in tissue engineering. In this article, poly(lactide‐co‐glycolide) (PLGA) scaffolds with a bimodal pore structure including macropores and micropores to facilitate nutrient transfer and cell adhesion were fabricated by combining supercritical CO2 (scCO2) foaming with particle leaching technique. Three kinds of NaCl particles with different scales (i.e., 100–250, <75, <10 μm) were used as porogens, respectively. In particular, heterogeneous nucleation occurred to modify scCO2 foaming/particle leaching process when NaCl submicron particles (<10 μm) were used as porogens. The observation of PLGA scaffolds gave a formation of micropores (pore size <10 μm) in the cellular walls of macropores (pore size around 100–300 μm) to present a bimodal pore structure. With different mass fractions of NaCl introduced, the porosity of PLGA scaffolds ranged from 68.4 ± 1.4 to 88.7 ± 0.4% for three NaCl porogens. The results of SEM, EDS, and in vitro cytotoxicity test of PLGA scaffolds showed that they had uniform structures and were compatible for cell proliferation with no toxicity. This novel scCO2 foaming/particle leaching method was promising in tissue engineering due to its ability to fabricate scaffolds with precise pore structure and high porosity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43644.  相似文献   

15.
In this work we investigated the solid-state supercritical CO2 (scCO2) foaming of poly(?-caprolactone) (PCL), a semi-crystalline, biodegradable polyester, and PCL loaded with 5 wt% of hydroxyapatite (HA) nano-particles.In order to investigate the effect of the thermal history and eventual residue of the crystalline phase on the pore structure of the foams, samples were subjected to three different cooling protocols from the melt, and subsequently foamed by using scCO2 as blowing agent. The foaming process was performed in the 37-40 °C temperature range, melting point of PCL being 60 °C. The saturation pressure, in the range from 10 to 20 MPa, and the foaming time, from 2 to 900 s, were modulated in order to control the final morphology, porosity and pore structure of the foams and, possibly, to amplify the original differences among the different samples.The results of this study demonstrated that by the scCO2 foaming it was possible to produce PCL and PCL-HA foams with homogeneous morphologies at relatively low temperatures. Furthermore, by the appropriate combination of materials properties and foaming parameters, we prepared foams with porosities in the 55-85% range, mean pore size from 40 to 250 μm and pore density from 105 to 108 pore/cm3. Finally, we also proposed a two-step depressurization foaming process for the design of bi-modal and highly interconnected foams suitable as scaffolds for tissue engineering.  相似文献   

16.
When CO2 is dissolved into a polymer, the viscosity of the polymer is drastically reduced. In this paper, the melt viscosities of low‐density polyethylene (LDPE)/supercritical CO2 solutions were measured with a capillary rheometer equipped at a foaming extruder, where CO2 was injected into a middle of its barrel and dissolved into the molten LDPE. The viscosity measurements were performed by varying the content of CO2 in the range of 0 to 5.0 wt% and temperature in the range of 150°C to 175°C, while monitoring the dissolved CO2 concentration on‐line by Near Infrared spectroscopy. Pressures in the capillary tube were maintained higher than an equilibrium saturation pressure so as to prevent foaming in the tube and to realize single‐phase polymer/CO2 solutions. By measuring the pressure drop and flow rate of polymer running through the tube, the melt viscosities were calculated. The experimental results indicated that the viscosity of LDPE/CO2 solution was reduced to 30% of the neat polymer by dissolving CO2 up to 5.0 wt% at temperature 150°C. A mathematical model was proposed to predict viscosity reduction owing to CO2 dissolution. The model was developed by combining the Cross‐Carreau model with Doolittle's equation in terms of the free volume concept. With the Sanchez‐Lacombe equation of state and the solubility data measured by a magnetic suspension balance, the free volume fractions of LDPE/CO2 solutions were calculated to accommodate the effects of temperature, pressure and CO2 content. The developed model can successfully predict the viscosity of LDPE/CO2 solutions from PVT data of the neat polymer and CO2 solubility data.  相似文献   

17.
A triblock copolymer, containing a polyethylene glycol (PEG) block and two symmetrical poly(2‐(dimethylamino)ethyl methacrylate) (PDM) blocks, was synthesized by using PEG‐based macroinitiator with copper‐mediated living radical polymerization. The conductivity tests showed that the copolymer exhibited switchable responsiveness to CO2, i.e., a relatively high conductivity of solution can be switched on and off by bubbling and removing of CO2. According to the nuclear magnetic resonance results, the CO2‐switchable conductivity variation could be attributed to protonation and deprotonation of tertiary amine groups in PDM blocks. Moreover, at a proper weight concentration 0.5%, the copolymer aqueous solution displayed a CO2‐switchable viscosity variation. Scanning electron microscopy, cryogenic transmission electron microscopy, and dynamic light scattering characterization jointly demonstrated that the viscosity variation was the result of a CO2‐switchable vesicle‐network aggregate structure transition. This structure transition can actually be attributed to a hairpin‐line molecular configuration conversion in terms of the reasonable mechanism discussion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44417.  相似文献   

18.
The effect of supercritical carbon dioxide (scCO2) on the interfacial tension between a polymer melt pair—polystyrene (PS) and low density polyethylene (LDPE)—was studied using the pendant drop method at temperatures varying from 200 to 240°C and CO2 pressures up to 18 MPa. The LDPE melt was prepared in a high pressure optical cell and the PS pendant drop was injected into the LDPE melt with a special high pressure syringe. For measurements with scCO2, the optical cell was first pressurized with scCO2 and measurements were taken after the saturation of scCO2 into both polymer melts. Excellent agreement was found with literature data for the same system without using scCO2. For the polymer pair saturated with scCO2, it was found that the interfacial tension decreases significantly with increasing CO2 pressure and appears to level off at higher CO2 pressures.  相似文献   

19.
This study reports the low‐temperature and clean fabrication of porous poly(lactic acid) (PLA) through solid‐state foaming using various mixtures of ethyl lactate (EL) and supercritical CO2 (scCO2) as the blowing agent. Results showed that adding a small amount of EL (up to 0.2% molar fraction) to scCO2 enhanced the plasticizing effect of the blowing agent mixture. As a direct consequence, at an operating temperature of 35 °C, PLA foams could be manufactured with homogeneous morphology, density as low as 0.09 ± 0.01 g cm?3, mean pore sizes up to 519.0 ± 205.0 µm and pore densities in the range 2.0 × 105 to 3.4 × 108 pores cm?3. Conversely, at a temperature of 40 °C, an increase of plasticizer concentration in the blowing agent mixture up to 0.2% promoted the crystallization of the polymer during sorption stage and, consequently, foaming was slightly reduced. © 2013 Society of Chemical Industry  相似文献   

20.
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号