首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seeds from 20 species belonging to Boraginaceae, subfamilies Boraginoideae and Heliotropioideae, were surveyed in a search for new sources of γ‐linolenic acid (GLA) and stearidonic acid (SDA). Seed oil content ranged from 7.5% in Echium humile ssp. pycnanthum to 28.8% in Anchusa undulata. GLA ranged from 0.2% of total fatty acids in Heliotropium undulatum to 20.2% in Lithodora maroccana. This last species may be considered as new source of GLA. GLA content was also tested in other Lithodora species from the south east of Spain, to compare GLA percentages among related taxa. GLA amounts in all Echium species reached approximately 12%, in good agreement with previous findings in other European Echium species. SDA ranged from an absence in several Cynoglossum species to 16.2% in Echium humile ssp. pycnanthum, which may be considered as a new source of this fatty acid.  相似文献   

2.
HPLC analysis of Echium plantagineum seed oil shows a complex triacylglycerol (TAG) profile. TAG species were separated on an analytical scale by HPLC and their fatty acid (FA) composition is reported. GLC analyses showed that some TAG fractions reached a stearidonic acid (SDA, 18:4n‐3) percentage significantly higher than that in the original oil. TAG separation on a bigger scale was also essayed, by means of a gravimetric normal‐phase chromatographic column, using silver ion‐silica gel as stationary phase. Gradient elution with solvents of increasing polarity was applied, allowing the separation of valuable TAG species containing γ‐linolenic acid (GLA, 18:3n‐6), α‐linolenic acid (ALA, 18:3n‐3) and SDA as the main constituents (more than 85% of the total FA). An enzymatic hydrolysis reaction showed the distribution of FA in the isolated species of TAG. SDA was the major FA in the sn‐2 position (more than 50% of total FA), followed by ALA (19%) and GLA (18.5%).  相似文献   

3.
Stearidonic acid (SA, 18:4n‐3) is a polyunsaturated fatty acid (PUFA) that constitutes the first metabolite of α‐linolenic acid (ALA, 18:3n‐3) in the metabolic pathway leading to C20–22 PUFA, such as eicosapentaenoic acid (EPA, 20:5n‐3), and docosahexaenoic acid (DHA, 22:6n‐3), which recently have received much attention because of their various physiological functions in the human body. Recently, several studies indicated that dietary SA increased EPA more efficiently than ALA. Thus, vegetable oils containing SA may become a dietary source of n‐3 fatty acids that is more effective in increasing tissue n‐3 PUFA concentrations than the current ALA‐containing vegetable oils. Nevertheless, few SA sources occur in nature, although there are still a large number of species untested to date. SA has been detected in variable amounts in several species of algae, fungi and animals tissues, but the seeds of some plant families seem to be better sources of SA, especially Echium (Boraginaceae) species. This work reviews the nutritional significance, medical uses and natural occurrence of SA.  相似文献   

4.
This review summarises and evaluates current knowledge of α‐linolenic acid (αLNA) metabolism in adult humans. The principal biological role of αLNA appears to be as a precursor for the synthesis of longer‐chain n‐3 polyunsaturated fatty acids (PUFA). Stable isotope tracer studies indicate that conversion of αLNA to eicosapentaenoic acid (EPA) occurs but is limited in men and that further transformation to docosahexaenoic acid (DHA) is very low. A lower proportion of αLNA is used for β‐oxidation in women compared with men, while the fractional conversion to the longer‐chain n‐3 PUFA is greater, possibly due to the regulatory effects of oestrogen. Increasing αLNA intake for a period of weeks results in an increase in the proportion of EPA in plasma lipids, circulating cells and breast milk, but there is no increase in DHA, which may even decline in some pools at high αLNA intakes. Overall, αLNA appears to be a limited source of longer‐chain n‐3 PUFA in man, and so adequate intakes of preformed long‐chain n‐3 PUFA, in particular DHA, may be important for maintaining optimal tissue function. The capacity to up‐regulate αLNA transformation in women may be important for meeting the demands of the foetus and neonate for DHA.  相似文献   

5.
Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n‐3) and docosahexaenoic acid (22:6 n‐3) from α‐linolenic acid (ALA; 18:3 n‐3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n‐6). In the present study, the influence of dietary high‐oleic acid (OLA; 18:1 n‐9) soybean oil (HOSO) on egg and tissue deposition of ALA and n‐3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced‐LNA base diet supplemented with high‐ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long‐chain (VLC; >20C) n‐3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n‐3 PUFA contents. Nine 51‐week‐old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n‐3 and VLC n‐3 PUFA contents in egg yolk by 9.4‐fold and 2.2‐fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n‐3 PUFA, and total n‐3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer‐chain/more unsaturated n‐3 PUFA derivatives.  相似文献   

6.
Polyunsaturated fatty acids (PUFA) are important ingredients of human diet because of their prominent role in the function of human brain, eye and kidney. α‐Linolenic acid (ALA), a C18, n‐3 PUFA is a precursor of long chain PUFA in humans. Commercial lipases of Candida rugosa, Pseudomonas cepacea, Pseudomonas fluorescens, and Rhizomucor miehei were used for hydrolysis of flax seed oil. Reversed phase high performance liquid chromatography followed by gas chromatography showed that the purified oil contained 12 triacylglycerols (TAGs) with differences in fatty acid compositions. Flax seed oil TAGs contained α‐linolenic acid (50%) as a major fatty acid while palmitic, oleic, linoleic made up rest of the portion. Among the four commercial lipases C. rugosa has preference for ALA, and that ALA was enriched in free fatty acids. C. rugosa lipase mediated hydrolysis of the TAGs resulted in a fatty acid mixture that was enriched in α‐linolenic to about 72% yield that could be further enriched to 80% yield by selective removal of saturated fatty acids by urea complexation. Such purified ALA can be used for preparation of ALA‐enriched glycerides. Practical applications : This methodology allows purifying ALA from fatty acid mixture obtained from flax seed oil by urea complexation.  相似文献   

7.
In zygomycetes fungi, many Mucor spp. have been known to produce γ‐linolenic acid (GLA) in their biomass. Among 250 soil samples screened, 20 Mucor isolates showed GLA in their mycelial mass under normal cultivation conditions. Sudan Black B was used for screening their qualitative oleaginesity. Among the representative isolates, Mucor sp. CFR‐G15, when grown in a fat‐producing medium, showed a maximum lipid content of 30 ± 1.32% in its mycelia and 14.42 ± 0.74% GLA. By using gene‐specific primers, the 18S rRNA gene and the Δ6 DES gene were amplified by PCR technique. The nucleotide sequences of the 18S rRNA and Δ6 DES genes exhibited >98% homology with M. rouxii ATCC 24905 (accession nos. AF117923 and AF296076, respectively), suggesting taxonomic identity. The native isolate M. rouxii CFR‐G15 reported in this study was found to be promising for the development of an economical process in the industrial production of GLA.  相似文献   

8.
Forty-nine plant species from Spain, belonging to the Boraginaceae, Scrophulariaceae, Onagraceae, and Ranunculaceae families, were surveyed in a search of new sources of γ-linolenic acid (18∶3ω6, GLA). Fatty acid profiles from seeds, stems, roots, flowers and leaves were determined. GLA was detected mainly in seed and root tissues. High GLA amounts were found in seeds of Boraginaceae species, with a maximum of 20.25% of total fatty acids in Myosotis nemorosa. Within the Scrophulariaceae the highest GLA content (10.17%) was found in Scrophularia sciophila. Variable amounts of stearidonic acid, (18∶4ω3, SDA) were present in Boraginaceae species, ranging from 0.08% of total seed fatty acids in Anchusa azurea to 21.06% in Echium asperrimum. SDA was also very abundant in all organs of Asperugo procumbens. A multivariate analysis was performed using our results and those reported for other plant species belonging to the same families in order to investigate a possible correlation between the fatty acid profile and the genera within these families.  相似文献   

9.
Seed oils from Acer species are a potential source of the nutraceutical fatty acids, nervonic acid (cis‐15‐tetracosenoic acid, NA), and γ‐linolenic acid (cis‐6,9,12‐octadecatrienoic acid, GLA). To further characterize the genus, seed fatty acid content and composition were determined for 20 species of Acer. Fatty acid content ranged from 8.2% for Acer macrophyllum to over 36% for A. mono and A. negundo. The presence of very‐long‐chain fatty acids (VLCFA), with chain length of 20‐carbons or greater, and GLA were characteristic features of the seed oils. In all species, erucic acid (cis‐13‐docosenoic acid, EA) was the predominant VLCFA with the highest level of NA being only 8.6% in A. olivianum. Regioselective lipase digestion demonstrated that VLCFA are largely absent from the sn‐2 position of seed triacylglycerol, whereas GLA is primarily located at this position. Five Acer species contained low levels (<2%) of cis‐12‐octadecenoic acid and cis‐14‐eicosenoic acid, uncommon n‐6 fatty acids not previously reported from Acer.  相似文献   

10.
The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA–LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high‐performance liquid chromatography coupled to a diode array detector (Ag‐HPLC‐DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1 % acetonitrile in n‐hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n‐3 and n‐6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L?1. The developed method was used to evaluate of n‐3 and n‐6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC‐FID based method.  相似文献   

11.
n‐3 Tetracosapentaenoic acid (24:5n‐3, TPAn‐3) and tetracosahexaenoic acid (24:6n‐3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n‐3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn‐3 and THA and their response to changing dietary α‐linolenic acid (18:3n‐3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post‐weaning. Serum n‐3 and n‐6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography–mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn‐3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn‐3 or THA change across all dietary DHA intake levels. Serum TPAn‐3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn‐3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.  相似文献   

12.
There is growing scientific evidence that consumption of n‐3 very long‐chain polyunsaturated fatty acids (n‐3 VLC‐PUFA) helps in brain and eye development, and protects against a range of common degenerative diseases. This has provided the impetus to the scientists to develop new and renewable sources for these important fatty acids so that the food industry is able to produce and market products fortified with n‐3 VLC‐PUFA. The bioactive efficacy and stability of food products containing n‐3 VLC‐PUFA may be determined not only by the amount of n‐3 VLC‐PUFA present but also by the positional distribution of these acids within the triacylglycerol (TAG) molecules (regiopurity). Studies of the effects of positional distribution on the functionality of n‐3 VLC‐PUFA containing oils have been hampered by a general lack of pure TAG regioisomers for experimentation. This paper reviews methods that have been used for the synthesis of TAG regioisomers containing n‐3 VLC‐PUFA, with special reference to those in which one n‐3 VLC‐PUFA occurs in combination with two long‐chain saturated acids.  相似文献   

13.
The effects of blending camelina oil with a number of fish oils on oxidative stability and fishy odour were evaluated. Camelina oil was found to be more stable than tuna oil, ‘omega‐3’ fish oil and salmon oil as indicated by predominantly lower ρ‐anisidine (AV), thiobarbituric acid reactive substances (TBARS) and conjugated triene levels (CT) during storage at 60 °C for 20 days (p < 0.05). Peroxide values (PV) were similar for all oils until Day 13 when values for camelina oil were higher. Values for blends of the fish oils (50, 25, 15, 5%) with camelina oil were generally between those of their respective bulk oils indicating a dilution effect. Camelina oil had a similar odour score (p < 0.05) to sunflower oil (9.2 and 9.6, respectively) indicating, as expected, an absence of fishy odours. In comparison, the fish oils had lower scores of 6.1 to 6.6 (p < 0.05) indicating mild to moderate fishy odours. Odour scores were improved at the 25% fish oil levels (p < 0.05) and were not different to camelina oil at the 15 or 5% levels (p < 0.05). Practical applications: Camelina oil is a potentially important functional food ingredient providing beneficial n‐3 PUFA. Oil extracted from Camelina sativa seeds contains greater than 50% polyunsaturated fatty acids of which 35‐40% is α‐linolenic acid (C18:3ω3, ALA), an essential omega‐3 fatty acid 1 . While EPA and DHA from fish oils are more potent nutritionally, they are less stable than ALA. This work evaluated innovative blends of fish oil with camelina oil for stability and acceptability. The results demonstrate that there is potential for use of blends of camelina oil with fish oils in food products, as the results show some benefits in terms of reduction of fishy odours. Such information could be valuable in relation to formulation of food products containing high levels of n‐3 PUFA from both plant and fish sources.  相似文献   

14.
Currently there is great interest in dietary n‐3 fatty acids to promote health. The food industry aims to produce food products enriched in α‐linolenic acid (Ln), eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to reduce some of the physiological effects of linoleic acid (L), the major polyunsaturated fatty acid in our diet. However, the goal is hampered by the susceptibility of the n‐3 fatty acids to oxidation. As a result the sensory and nutritional quality of such foods deteriorates. Lipid scientists therefore have to find a way to stabilise these fatty acids. Innovative technologies to protect n‐3 polyunsaturates using antioxidants, adequate preparation, refining and packaging of the oil are needed. In this paper we review the inherent stability and the stabilisation of these nutritionally valuable polyunsaturated fatty acids.  相似文献   

15.
Shin  Kyong-Oh  Kim  Kunpyo  Jeon  Sanghun  Seo  Cho-Hee  Lee  Yong-Moon  Cho  Yunhi 《Lipids》2015,50(10):1051-1056
Ceramide 1 (Cer1), a Cer species with eicosasphingenine (d20:1) amide‐linked to two different ω‐hydroxy fatty acids (C30wh:0:C32wh:1), which are, in turn, ester‐linked to linoleic acid (LNA; 18:2n‐6), plays a critical role in maintaining the structural integrity of the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil [BO: 36.5 % LNA and 23.5 % γ‐linolenic acid (GLA; 18:3n‐6)], in essential fatty acid (EFA)‐deficient guinea pigs, we further investigated the effects of BO on the substitution of ester‐linked GLA for LNA in these two epidermal Cer1 species by LC–MS in positive and negative modes. Dietary supplementation of BO for 2 weeks in EFA‐deficient guinea pigs increased LNA ester‐linked to C32wh:1/d20:1 and C30wh:0/d20:1 of Cer1. Moreover, GLA ester‐linked to C32wh:1/d20:1, but not to C30wh:0/d20:1, of Cer1 was detected, which was further confirmed by the product ions of m/z 277.2 for ester‐linked GLA and m/z 802.3 for the deprotonated C32wh:1/d20:1. C20‐Metabolized fatty acids of LNA or GLA were not ester‐linked to these Cer1 species. Dietary BO induced GLA ester‐linked to C32wh:1/d20:1 of epidermal Cer1.  相似文献   

16.
Y. Du  J. Guo 《化学工程与技术》2009,32(12):1916-1921
With Hβ zeolite as the catalyst and θ rings as the fillings, the technological process of synthesizing n‐butyl acetate with acetic acid and n‐butanol in a Φ 30 mm and 2 m tall catalytic rectifying column was studied. The influence of factors such as catalyst loading height, material feed site, reflux ratio and feed rate on the esterification reaction and the rectification effect was investigated. The study results suggested that the appropriate conditions of n‐butyl acetate synthesis by catalytic rectification include: The height ratio of the rectifying section, the reaction section and the stripping section is 1:1:1; acetic acid and n‐butanol are fed in upside and downside of the reaction section, respectively; the reflux ratio is 2.5; the liquid hourly space velocity of n‐butanol is 0.64 h–1. Under these conditions, the mass fraction of n‐butyl acetate in the column bottom is 98.64 %, and the total yield of n‐butyl acetate is 91.5 %.  相似文献   

17.
Hemp seeds (HS) constitute a rich nutrient source and contain γ‐linolenic acid (GLA, 18:3, n‐6), which is a healthy fatty acid (FA). The objectives of this research are i) to look for GLA‐rich varieties of unhusked hemp seeds (UHS) and commercial hulled hemp seeds (HHS); ii) to check the influence of different extracting systems on both oil yield and FA profiles; iii) to test a simultaneous oil extraction/GLA‐enrichment process looking to improve GLA content. Hop and European hackberry seeds (both from Cannabaceae family) are also analyzed for comparative purposes. GLA is the most discriminant FA among UHS varieties, ranging in both UHS and HHS seeds from 0.5% to 4.5% of total FA, while hop seeds are the richest GLA source from Cannabaceae (7.2% of total FA). The extraction system selected for hemp seeds processing has a clear influence on oil yields, although, the FA profiles are slightly modified. The use of n‐hexane and n‐hexane:acetone in extractions allows an improvement in oil yields at the same GLA percentage. A process comprising saponification and subsequent cooling allows the improvement of GLA percentage in both hemp and hop seeds extracts at values higher than 10% of total FA, at high yields (>70%). Practical Applications: The global HS market increases significantly year after year and the demand of hemp products is increasing rapidly. The natural GLA sources in nature are limited, and although hemp contains GLA, this reaches low percentages in the oil. Hemp is a well‐established crop with highly standardized agricultural technologies, thus, the development of any well‐designed processes feasible for application in oil extraction industries, would allow the development of new GLA‐based functional seed oils. This would boost the development of the agricultural and food industries dedicated to revaluing hemp products.  相似文献   

18.
The essential fatty acid γ‐linolenic (GLA, C18:3n‐6), which has several pharmaceutical properties, has been concentrated from the seed oil of three plant species, Borago officinalis, Anchusa azurea and Echium fastuosum. The process was effected through one single and ecological step: simultaneous seed oil extraction/saponification/GLA concentration. Finally, the mother liquor containing the GLA concentrate was stored at low temperature to crystallize saturated fatty acids and further increase GLA purity. Two variables affecting the process were found: water content in the saponification mixture and filtration temperature. Best results were obtained from B. officinalis (GLA purity 68%, GLA yield 64%), although closely followed by the concentrates from the other species.  相似文献   

19.
The effects of rainbow trout cold storage on the quality of offal left after fish processing to fillets with skin were determined. The intact farmed rainbow trout were kept at 2 °C in ice for 0, 4, 7, and 14 days of storage. The offal was, immediately after processing, frozen at ?20 °C and analysed after a month‐long frozen storage; fillets (non‐frozen) were analysed as well. Non‐protein nitrogen, volatile bases, trimethylamine, lipid oxidation (peroxide value, anisidine value, UV‐VIS spectra, and fluorescence) and fatty acid composition were determined. The offal consists in 15% of protein and in about 20% of chloroform/methanol‐extractable lipids, with n‐3 polyunsaturated fatty acids (n‐3 PUFA) accounting for 20.37 ± 1.25% of the fatty acids. The fish storage duration was found to exert a significant (p = 0.05) effect on the changes in lipids and nitrogen compounds. No losses of long‐chain n‐3 PUFA in the offal were detected during the 2 wk of storage in ice plus 1 month at ?20 °C. The rainbow trout offal is a valuable – rich and stable – source of n‐3 PUFA.  相似文献   

20.
The aim of this study was to evaluate the effects of ω‐3 PUFA (n‐3 PUFA) on lipid profile and insulin resistance biomarkers. Patients were assigned to receive placebo or n‐3 PUFA 1 g three times a day, during the meals, for 6 months. We evaluated: body mass index (BMI), body weight, fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostasis model assessment insulin resistance index (HOMA‐IR), blood pressure, lipid profile, resistin (r), retinol binding protein‐4 (RBP‐4), adiponectin (ADN), visfatin, and vaspin. Furthermore patients underwent an oral fat load (OFL) and an euglycemic hyperinsulinemic clamp to evaluate M value, and total glucose requirement (TGR). Triglycerides value obtained with n‐3 PUFA was lower, while HDL‐C, and ADN values were higher compared to placebo. After the OFL, and comparing the OFL performed at the baseline and at the end of the study, there was a decrease of triglycerides (Tg), resistin (r), and RBP‐4 values, and an increase of ADN value with n‐3 PUFA, but not with placebo. We conclude that the treatment with n‐3 PUFA resulted in a greater improvement of lipid profile and ADN compared to placebo in a baseline condition, and an improvement of all insulin resistance parameters after an OFL. Practical applications: The inverse association between dietary intake of n‐3 PUFA and cardiovascular disease morbidity/mortality was primarily established following the observation that the Greenland Inuits had low mortality from coronary heart disease despite a fat‐rich diet. Our group has already shown that n‐3 PUFA improved the lipid profile and the coagulation, fibrinolytic, and inflammatory parameters compared to placebo. We also observed that highly purified n‐3 PUFA supplementation significantly reduced the blood pressure, pulse pressure, and basal heart rate in hypertriglyceridemic patients with normal‐high blood pressure. The current study showed that treatment with n‐3 PUFA not only improved lipid profile in a baseline situation, but it also improved all insulin resistance parameters in a post‐prandial situation simulated with an OFL. This is another important action of the n‐3 PUFA which can increase their utility in the clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号