首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular simulations were performed to study a diverse collection of 105 metal‐organic frameworks (MOFs) for their ability to remove CH4 from CH4/H2 mixture. To investigate the practical industrial application in a pressure swing adsorption (PSA) process, working capacity was also considered in addition to selectivity. The results show that MOFs are promising candidate for this separation, which give higher adsorption selectivity with similar working capacity and higher working capacity with similar selectivity than the traditional nanoporous materials such as carbonaceous materials and zeolites. To quantitatively describe the structure–property relationship for CH4/H2 mixture separation in MOFs, a new concept named “adsorbility” was defined, which shows strong correlation with limiting selectivity, with a correlation coefficient (r2) of 0.86. This work shows that although MOFs are promising materials for CH4/H2 mixture separation, more investigations that consider both selectivity and working capacity are necessary to screen MOFs in practical PSA application. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

2.
Grand canonical Monte Carlo (GCMC) simulations with configurational biasing were used to study the enantioselective adsorption of four alkanols in a homochiral metal‐organic framework, known as hybrid organic‐inorganic zeolite analogue HOIZA‐1. Conventional GCMC simulations are not able to converge satisfactorily for this system due to the tight fit of the chiral alcohols in the narrow pores. However, parallel tempering and parallel mole‐fraction GCMC simulations overcome this problem. The simulations show that the enantioselective adsorption of the different (R,S)‐alkanols is due to the specific geometry of the chiral molecules relative to the pore size and shape. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2324–2334, 2014  相似文献   

3.
High‐throughput prediction of H2 adsorption in metal‐organic framework (MOF) materials has been extended from a few specific conditions to the whole T, p space. The prediction is based on a classical density functional theory and has been implemented over 712 MOFs in 441 different conditions covering a wide range. Some testing materials show excellent behavior at low temperatures and obvious improvement at high temperatures compared to conventional MOFs. The structures of the best MOFs at high and low temperatures are totally different. Linear and nonlinear correlations between the two Langmuir parameters have been found at high and low temperatures, respectively. According to the analysis of the excess uptake, we found that the saturated pressure increases along with temperature in the low temperature region but decreases in the high temperature region. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2951–2957, 2015  相似文献   

4.
In this study, a new cobalt‐based metal‐organic framework (MOF), [ (μ3‐OH)2(ipa)5(C3O2)(DMF)2] (CoIPA) was synthesized. The crystal structure analysis shows that CoIPA is constructed by Co63‐OH)2 units linked by isophthalic acid forming a sxb topology and it possesses a small pore size of about 4 Å. The new MOF has been characterized using multiple experimental methods. Monte Carlo and Molecular Dynamic simulations were employed to investigate adsorption equilibrium and kinetics in terms of capacity and diffusivity of CO2, N2, and CH4 on CoIPA. The gas adsorption isotherms collected experimentally were used to verify the simulation results. The activated CoIPA sample exhibits great gas separation ability at ambient conditions for CO2/N2 and CO2/CH4 with selectivity of around 61.4 and 11.7, respectively. The calculated self‐diffusion coefficients show a strong direction dependent diffusion behavior of target molecules. This high adsorption selectivity for both CO2/N2 and CO2/CH4 makes CoIPA a potential candidate for adsorptive CO2 separation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4532–4540, 2017  相似文献   

5.
Gas separation by metal‐organic framework (MOF) membranes is an emerging research field. Their commercial application potential is, however, still rarely explored due in part to unsatisfied separation characteristics and difficulty in finding suitable applications. Herein, we report “sharp molecular sieving” properties of high quality isoreticular MOF‐1 (IRMOF‐1) membrane for CO2 separation from dry, CO2 enriched CO2/CH4, and CO2/N2 mixtures. The IRMOF‐1 membranes exhibit CO2/CH4 and CO2/N2 separation factors of 328 and 410 with CO2 permeance of 2.55 × 10?7 and 2.06 × 10?7 mol m?2 s?1 Pa?1 at feed pressure of 505 kPa and 298 K, respectively. High grade CO2 is efficiently produced from the industrial or lower grade CO2 feed gas by this MOF membrane separation process. The demonstrated “sharp molecular sieving” properties of the MOF membranes and their potential application in production of value‐added high purity CO2 should bring new research and development interest in this field. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3836–3841, 2016  相似文献   

6.
H2O adsorptions inside porous materials, including silica zeolites, zeolite imidazolate frameworks, and metal–organic frameworks (MOFs) using molecular simulations with different water models are investigated. Due to the existence of coordinately unsaturated metal sites, the predicted adsorption properties in M‐MOF‐74 (M = Mg, Ni, Co, Zn) and Cu‐BTC are found to be greatly sensitive to the adopted H2O models. Surprisingly, the analysis of the orientations of H2O minimum energy configuration in these materials show that three‐site H2O models predict an unusual perpendicular angle of H2O plane with respect to the Metal‐O4 plane, whereas those models with more than three sites give a more parallel angle that is in better agreement with the one obtained from density functional theory (DFT) calculations. In addition, the use of these commonly used models estimates the binding energies with the values lower than the ones computed by DFT ranging from 15 to 40%. To correct adsorption energies, simple approach to adjust metal‐O(H2O) sigma parameters to reproduce the DFT‐calculated binding energies is used. With the refined parameters, the computed water isotherms inside Mg‐MOF‐74 and Cu‐BTC are in reasonable agreement with experimental data, and provide significant improvement compared to the predictions made by the original models. Further, a detailed inspection on the water configurations at higher‐pressure region was also made, and observed that there is an interesting two‐layer water network formed using three‐ and four‐site models. © 2014 American Institute of Chemical Engineers AIChE J, 61: 677–687, 2015  相似文献   

7.
High tunability of both ionic liquids (ILs) and metal organic frameworks (MOFs) enables great opportunity in the rational designation of IL/MOF composites for physical adsorption and separation. Traditionally, cations and anions of ILs as an entirety are combined with MOFs either inside or outside the microchannels. Herein, organic cations of ILs were confined into Cu-BTC and the champion adsorbent is obtained by using 1-propionic acid-3-vinylimidazole bromide as the precursor with a moderate loading amount, exhibiting higher CO2 uptakes of 8/5 mmol g−1 than Cu-BTC (6.0/3.5 mmol g−1) at 273/298 K and 100 kPa, associating with significantly improved CO2/N2(CH4) selectivities. The organic cations are interacted with two adjacent CuII2(CRO2)2 paddle wheel units of Cu-BTC, expanding the Cu O bond to strengthen the CO2 affinity of open Cu sites and also serving as an additive CO2 adsorptive site. The promotion of CO2 capture ability is further reflected in the dynamic column breakthrough experiment.  相似文献   

8.
刘有毅  黄艳  何嘉杰  肖静  夏启斌  李忠 《化工学报》2015,66(11):4469-4475
主要研究了MOF-74(Ni)材料对CO/N2/CO2的吸附分离性能。应用水热法合成制备MOF-74(Ni),分别采用全自动表面积吸附仪、P-XRD、扫描电子显微镜对材料的孔隙结构和晶体形貌进行了表征,应用静态吸附法测定了CO、N2和CO2在MOF-74(Ni)上的吸附等温线,应用DSLF方程模拟了3种气体MOF-74(Ni)上的吸附等温线,依据IAST理论模型计算了MOF-74(Ni)对CO/N2二元混合物和CO/CO2二元混合物的吸附选择性。研究结果表明:在0.1 MPa和常温条件下,MOF-74(Ni)材料对CO吸附容量高达6.15 mmol·g-1,而相同条件下N2的吸附量只有0.86 mmol·g-1。MOF-74(Ni)在低压下(0~40 kPa)对CO的吸附量明显高于其对CO2的吸附量。应用IAST模型估算MOF-74(Ni)对二元混合物吸附选择性的结果表明:MOF-74(Ni)对CO/N2混合物的吸附选择性在1000以上;MOF-74(Ni)对CO/CO2的吸附选择性在4~9范围,在所研究的二元气体混合物吸附体系中,MOF-74(Ni)都能优先吸附CO。  相似文献   

9.
10.
Imidazolate framework ZIF‐8 is modified via postsynthetic method using etheylenediamine to improve its adsorption performance toward CO2. Results show that the BET surface area of the modified ZIF‐8 (ED‐ZIF‐8) increases by 39%, and its adsorption capacity of CO2 per surface area is almost two times of that on ZIF‐8 at 298 K and 25 bar. H2O uptake on the ED‐ZIF‐8 become obviously lower compared to the ZIF‐8. The ED‐ZIF‐8 selectivity for CO2/N2 adsorption gets significantly improved, and is up to 23 and 13.9 separately at 0.1 and 0.5 bar, being almost twice of those of the ZIF‐8. The isosteric heat of CO2 adsorption (Qst) on the ED‐ZIF‐8 becomes higher, while Qst of N2 gets slightly lower compared to those on the ZIF‐8 Furthermore, it suggests that the postsynthetic modification of the ZIF‐8 not only improves its adsorption capacity of CO2 greatly, but also enhances its adsorption selectivity for CO2/N2/H2O significantly. ©2013 American Institute of Chemical Engineers AIChE J, 59: 2195–2206, 2013  相似文献   

11.
CO2/CH4分离能耗高是生物甲烷过程核心难题之一。金属有机骨架材料(metal organic frameworks,MOFs)由于其优异的CO2吸附分离性能,被视为最具潜力的CO2分离捕集材料,近年来引起了广泛的关注。本文结合沼气的特点和MOFs研究的最新进展,对MOFs材料在CO2/CH4吸附分离过程的相关实验研究工作进行了综述。  相似文献   

12.
In recent years, many researchers have studied on the hydrogen storage properties of metal‐organic frameworks (MOFs) by grand canonical Monte Carlo (GCMC) simulation. At present, the GCMC studies of Cu‐BTC (BTC: benzene‐1,3,5‐tricarboxylate) which is a prototypical metal‐organic framework mainly adopt the classical force fields, the simulation temperatures are mainly focus on 298 and 77 K, and most researchers did not consider the effects of quantum effects at low temperature. Therefore, we used the quantum effects to correct the classical force fields and the force fields with more accurate simulation results were used to simulate the hydrogen adsorption performances of Cu‐BTC in the temperature range of 77–298 K and the pressure range of 1–8 MPa at each temperature. The results show that the effects of quantum effects on the hydrogen storage of Cu‐BTC cannot be neglected and the corrected Dreiding force field can simulate hydrogen adsorption performances of Cu‐BTC more accurately at low temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1383–1388, 2018  相似文献   

13.
Highly selective capture of methane from nitrogen is considered to be a feasible approach to improve the heating value of methane and mitigate the effects of global warming. In this work, an ultramicroporous squarate‐based metal‐organic framework (MOF), [Co3(C4O4)2(OH)2] (C4O42? = squarate), with enhanced negative oxygen binding sites was synthesized for the first time and used as adsorbent for efficient separation of methane and nitrogen. Adsorption performance of this material was evaluated by single‐component adsorption isotherms and breakthrough experiments. Furthermore, density functional theory calculation was performed to gain the deep insight into the adsorption binding sites. Compared with the other state‐of‐the‐art materials, this material exhibited the highest adsorption selectivity (8.5–12.5) of methane over nitrogen as well as the moderate volumetric uptake of methane (19.81 cm3/cm3) under ambient condition. The unprecedented selectivity and chemical stability guaranteed this MOF as a candidate adsorbent to capture CH4 from N2, especially for the unconventional natural gas upgrading. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3681–3689, 2018  相似文献   

14.
We herein report an optimal modulated hydrothermal (MHT) synthesis of a highly stable zirconium metal‐organic framework (MOF) with an optimum aperture size of 3.93 Å that is favorable for CO2 adsorption. It exhibits excellent CO2 uptake capacities of 2.50 and 5.63 mmol g?1 under 0.15 and 1 bar at 298 K, respectively, which are among the highest of all the pristine water‐stable MOFs reported so far. In addition, we have designed a lab‐scale breakthrough set‐up to study its CO2 capture performance under both dry and wet conditions. The velocity at the exit of breakthrough column for mass balance accuracy is carefully measured using argon with a fixed flow rate as the internal reference. Other factors that may affect the breakthrough dynamics, such as pressure drop and its impact on the roll‐up of the weaker component have been studied in details. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4103–4114, 2017  相似文献   

15.
By taking desulfurization of liquid fuels as a demonstrative example, a bottom‐up selection was performed to find the metal‐organic frameworks (MOF)‐type adsorbents with highly efficient adsorption performance of large molecules. Through carefully analyzing the adsorption mechanism for typical S‐heterocyclic compounds like dibenzothiophene (DBT), PCN‐10 was selected in consideration of the simultaneous inclusion of several kinds of interactions in the framework. Experimental results demonstrate that this MOF exhibits extraordinary high DBT adsorption capacity (75.24 mg S g?1), showing record uptake among all the reported porous materials for the removal of thiophenicsulfur from fuels (below 1000 ppmwS), to the best of our knowledge. Moreover, the removal rate for the low sulfur concentration (50 ppmwS) can reach beyond 99%. This strategy can be conveniently extended to the screening and design of MOFs for the efficient removal of other important large guest molecules. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4491–4496, 2016  相似文献   

16.
Ionic liquid (IL) supported metal‐organic framework (MOF) was utilized to efficiently separate acetylene from ethylene. A common IL, 1‐butyl‐3‐methylimidazolium acetate ([Bmim][OAc]), was encapsulated into a hydrothermally stable MOF, namely MIL‐101(Cr). Characterization techniques including FTIR, Powder X‐ray diffraction, BET, and thermal gravimetric analysis were used to confirm successful encapsulation of the IL within MIL‐101(Cr). Adsorption isotherms of acetylene and ethylene in the IL‐encapsulated MOF were tested. From the results, the MOF composite retained a relatively high adsorption capacity. Remarkably, the adsorption selectivity of acetylene/ethylene has dramatically increased from 3.0 to 30 in comparison with the parent MIL‐101(Cr). Furthermore, the potential of industrial practice was examined by breakthrough and regeneration experiments. It not only satisfies the industrial production of removal of low level of acetylene from ethylene, but also is notably stable during the adsorption‐desorption process. The high designability of ILs combined with richness of MOFs’ structures exploits a novel blueprint for gas separation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2165–2175, 2017  相似文献   

17.
A comprehensive scale‐up procedure for amine‐functionalized UiO‐66 is implemented, which leads to the development of a novel flow‐through metal‐organic framework synthesis process. Products are characterized via BET modeling of N2 adsorption at 77 K and powder XRD to confirm crystal porosity and phase, respectively. Batch syntheses are conducted to examine the effects of polytetrafluoroethylene and glass vessel materials on crystal yield and quality. Intermediate samples from sealed‐vessel trials at 373, 383, and 393 K are collected and characterized, which show a high degree of product consistency. Nucleation rates are determined at the same temperatures, and the Arrhenius relationship is used to predict the activation energy of nucleation, EaNuc. A continuous‐flow reactive crystallization process is developed using a draft‐tube type reactor. As a proof of concept, the reactor is operated for three retention times. The cumulative product, material retained within the crystallizer, and intermediate samples are collected and characterized to confirm UiO‐66‐NH2 production. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1255–1262, 2013  相似文献   

18.
19.
Mixed‐matrix membranes (MMMs) have shown great advantages but still face some challenges, such as the trade‐off between permeability and selectivity, stability, and the lack of efficient ways to enhance them simultaneously. Here, the fabrication of MMMs with metal‐organic frameworks derived porous carbons (MOF‐PCs) as fillers which exhibit selective‐facilitating CO2 transport passage originating from interactions between fillers and CO2 is showed. With the aid of the developed multicalcination method, MOF‐PCs with variable N‐contents were prepared and incorporated into PPO‐PEG matrix for the first time to prepare MMMs, which show excellent separation performance for CO2/CH4 mixture with a tunable separation performance by combining different N‐contents and surface areas of MOF‐PCs. Moreover, the developed MMMs have hydrothermal and chemical stability. This work not only presents a series of MMMs with both good separation properties and stability, it also provides useful information for guiding the fabrication of high performance MMMs for practical application. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3400–3409, 2018  相似文献   

20.
黄艳  岳盈溢  何靓  陶鹰  彭俊洁  肖静  李忠 《化工学报》2015,66(9):3556-3562
研制了一种新型的CuCl@β分子筛吸附剂材料,它不仅对CO有着高吸附容量,而且对CO/N2和CO/CO2的二元混合气有着高吸附选择性。利用自发单层分散的原理制备了一系列的CuCl@β分子筛材料,分别应用氮气吸附以及XRD进行表征。CO在CuCl@β分子筛上吸附等温线和动态透过曲线分别通过静态吸附和固定床实验获得。依据IAST理论模型计算了CuCl@β分子筛对CO/N2二元混合物和CO/CO2二元混合物的吸附选择性。研究结果表明:(1)氯化亚铜的负载增强了一氧化碳在CuCl@β分子筛上的吸附容量,其最佳负载量为0.4 g·g-1。(2)CuCl@β分子筛吸附剂在增强CO的吸附量的同时,还降低了对二氧化碳和氮气的吸附。由于Cu+-CO π位络合键的存在,提高了CuCl@β分子筛对二元混合物CO/N2和CO/CO2的吸附选择性。(3)在低压下(0~10 kPa)下0.4CuCl@β分子筛对CO/N2和CO/CO2的吸附选择性分别高达1600~5200和120~370,远大于原始的β分子筛。CuCl@β分子筛对CO有着超高吸附容量以及吸附选择性,将会是一种很有潜力的CO分离提纯材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号