首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(9):10770-10778
Ho:Y2O3 ceramics were prepared using co-precipitated powders, with ammonium sulfate as dispersant. Y3+ was co-precipitated together with Ho3+ and Zr4+ to produce precursors, which were calcined at 1100–1400 °C to produce yttria-based powders. At calcination temperatures of ≤1300 °C, agglomeration of powders was not observed. When the temperature was increased to 1400 °C, severe agglomeration was detected. Densification was closely related to the calcination temperature: a lower calcination temperature resulted in a faster densification of ceramics to the relative density of 99.7%. The ultimate densification to ~100% was also closely related to powders' impurity level and agglomeration. Grain growth was mainly determined by sintering temperature, but not by the initial crystallite size of powders. The optimal calcination temperature was 1300 °C, at which the obtained Ho:Y2O3 powder was free from agglomeration. Using this powder, the resultant Ho:Y2O3 ceramics showed pore-free microstructure and good optical transparency.  相似文献   

2.
《Ceramics International》2015,41(7):8481-8487
In this work Sm3+ (0–2.0 at%) and Bi3+ (0–2.0 at%) doped Y2O3 luminescent powders were prepared by a sol–gel method from yttrium acetylacetonate, samarium and bismuth nitrates as metal sources. The as prepared powders (chemical composition is close to stoichiometric Y2O3) present the cubic structure from 700 °C, and at 900 °C are characterized by the presence of rounded particles with heterogeneous size of 42.9 nm. Luminescent effect of ions of Sm3+ and Bi3+ into Y2O3 host as was studied on heat treated powders from 800 to 1100 °C. The combination of the red luminescence from the Sm3+ ions and the bluish from Bi3+, makes the synthesized phosphors candidates to be used in fabrication of phosphor-converted light-emitting diodes (LEDs).  相似文献   

3.
CIGSe solar cells with an ink‐printing absorber layer were prepared on Mo‐coated alumina substrates. The use of alumina substrates can extend the process window to higher temperatures. The inks contained single‐phase CIGSe powder, which was formed by firing different selenide powders of Cu2Se, In2Se3, and Ga2Se3 at 800°C. All these powders were synthesized with an environment‐friendly and cost‐effective powder process. The printed inks were sintered at 600–800°C. The solar cells had power conversion efficiency of 0.50%, an open‐circuit voltage of 27 mV, a short‐circuit current density of 37 mA/cm2, and a fill factor of 0.50.  相似文献   

4.
Carbothermal reduction of Zr-sucrose gels powders into nano-phase ZrC, or ZrC-Zr(C,O) core-shell powders, via a composite of 2–4 nm sized ZrO2 and amorphous carbon, is described. Samples with 1.7–20 sucrose-carbon:Zr ratio gels heated to 1495 °C at 10 °Cmin?1, with 3 and 30 min hold time were studied in detail using; TG, XRD, SEM, TEM, STEM-EDX, and XPS with Ar+-ion etching. After 1495 °C, 3 min, the samples with 12-20C:Zr ratios yielded weakly agglomerated 30 to 40 nm sized ZrC particles, surrounded by a dense 5 nm thick shell of Zr(C,O). With 5C:Zr significant amounts of ZrO2 was present after heating at 1495 °C for 3 min, while after 30 min annealing, ZrC particles without residual amorphous carbon was obtained. Minor amounts of zirconia was found in most samples, which in similarity with the 5 nm Zr(C,O) shell, is believed to stem from post synthesis oxidation.  相似文献   

5.
Translucent, high‐performance, mullite ceramics with anisotropic grains were prepared by the spark plasma sintering (SPS) of a powder mixture consisting of commercial mullite powder, which already contained small amounts of alumina (θ and α) and silica (cristobalite) (≤3 wt% in total), to which 2 and 1 wt% of yttria and amorphous silica was admixed, respectively. The combination of low‐viscosity Y2O3–Al2O3–SiO2 transient liquid formation and SPS sintering provided enhanced densification, also provoking anisotropic grain growth (which became exaggerated after 20 min of SPS dwell time), at a relatively low sintering temperature of 1370°C. In this way, it was possible to meet the conflicting demands for obtaining a dense mullite ceramic with anisotropic grains, ensuring good mechanical properties, while preserving a noticeable light transmittance. In terms of mechanical and optical properties, the best results were obtained when SPS dwell times of 5 and 10 min were employed. The as‐sintered samples possessed densities in the range 3.16–3.18 g/cm3, anisotropic grains with an aspect ratio (AR) of 7 and a grain thickness of approximately 0.45 μm, a flexural strength between 350 and 420 MPa, a Vickers indentation toughness and a hardness of approximately 2.45 MPa·m1/2 and 15 GPa, respectively, and an optical transmittance of between 30% and almost 50% in the IR range.  相似文献   

6.
The effects of oxidation and particle shape on critical volume fractions of silver‐coated copper powders in conductive adhesives are investigated. Silver‐coated copper powders with spherical and flake‐shaped particles were oxidized at temperatures of 30°C, 175°C and 240°C for two hours and dispersed in an epoxy matrix. As silver‐coated copper powders are oxidized at 30°C and 175°C, the critical volume fractions of the conductive adhesives are slightly affected by oxidation and particle shape at these temperatures. As the oxidation temperature approaches 240°C, the critical volume fractions of the conductive adhesives are strongly affected by oxidation temperature and particle shape, owing to the formation of oxides such as Cu2O on the surface of silver‐coated copper powder—Cu diffuses from the interior to the surface of silver‐coated copper powder and reacts with the oxygen in the air. Silver‐coated copper powder with flake‐shaped particles shows lower critical volume fractions in conductive adhesives than silver‐coated copper powder with spherically shaped particles. Polym. Eng. Sci. 44:2075–2082, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
《Ceramics International》2021,47(24):34170-34181
The potential for a large number of applications has stimulated the exploration of the preparation of wearable light-storing buttons. In this study, SrAl2O4:Eu2+, Dy3+ (SROED) was used as a long-lasting phosphorescent material, mixed with unsaturated polyester resin in proportion. A light-storing button with high stability and long afterglow time is obtained by the dispensing method. The surface and cross morphology, phase structure, photoluminescence spectrum, luminescence image, afterglow performance and mechanical hardness of the luminescent button are characterized. The results show that the luminescence performance of the phosphorescent button is significantly better than that of the original luminescent material SROED after high temperature and high humidity aging, xenon lamp aging, and thermal cycling aging test. Even in this study, the afterglow life of light-storing buttons can be maintained up to 7h. The luminescence mechanism of light-storing buttons is also discussed. This result will be very beneficial for the preparation of high-quality light-storing buttons. At the same time, it also expands the application of long afterglow materials in the field of smart wearables.  相似文献   

8.
《Ceramics International》2022,48(7):9640-9650
In the field of advanced anti-counterfeiting research, it is a hot issue to develop a multimodal anti-counterfeiting material with adjustable luminescence characteristics. Here, persistent luminescent materials of BaGa2O4:xBi3+ (x = 0-0.02) and BaGa2O4:0.005Bi3+,yLi+ (y = 0.001–0.02) were synthesized by a solid state reaction at high temperature. BaGa2O4: Bi3+ exhibited a broad blue emission at ~470 nm (transition from [GaO4]) and a sharp NIR emission at ~710 nm (3P11S0 transition of Bi3+), upon UV excitation at 250 nm. Incorporation of Li+ in BGO: 0.005Bi3+ induced the emission color shifting from blue to green. After stoppage of UV excitation, the BGO:0.005Bi3+ exhibited white afterglow with emission peaks at the range of 500–700 nm. However, incorporation of Li+ leaded to a stronger green afterglow and a weaker NIR afterglow. When the afterglow disappeared, the sample outputted afterglow again after heating processing. The prepared samples exhibited time- and temperature-dependent multimode luminescence, so they were used as components, combined with Morse code to realize multi-modal dynamic anti-counterfeiting. The outcomes in this work indicate that the prepared luminescent materials have broad prospects in advanced anti-counterfeit applications.  相似文献   

9.
To improve the mechanical properties of blends of polypropylene (PP) and terpolymer of ethylene–propylene–diene (EPDM), a triblock copolymer, (PP‐g‐MAH)‐co‐[PA‐6,6]‐co‐(EPDM‐g‐MAH), was synthesized by coupling reaction of maleic anhydride (MAH)‐grafted PP (PP‐g‐MAH), EPDM‐g‐MAH, and PA‐6,6. The newly prepared block copolymer brought about a physical interlocking between the blend components, and imparted a compatibilizing effect to the blends. Introducing the block copolymer to the blends up to 5 wt % lead to formation of a β‐form crystal. The wide‐angle X‐ray diffractograms measured in the region of 2θ between 10° and 50° ascertained that incorporating the block copolymer gave a new peak at 2θ = 15.8°. The new peak was assigned to the (300) plane spacings of the β‐hexagonal crystal structure. In addition, the block copolymer notably improved the low‐temperature impact property of the PP/EPDM blends. The optimum usage level of the compatibilizer proved to be 0.5 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1267–1274, 2000  相似文献   

10.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

11.
The use of silicon powder to produce plasmonic Ag nanocomposite phosphate glasses which also exhibit improved transparency in the ultraviolet (UV) is proposed. Ag2O/Si codoped glasses were prepared in a barium‐phosphate matrix by a simple melt‐quench method in ambient atmosphere. The as‐prepared glasses exhibit enhanced UV transparency, whereby the surface plasmon resonance of Ag nanoparticles (NPs) is manifested for the glasses with higher Ag2O contents. 31P nuclear magnetic resonance spectroscopy is consistent with the formation of P–O–Si bonds, thus suggesting their possible role on the improved UV light transmission. Consequently, a model was presented accounting for the influence of silicon on the polymerization of the phosphate network concomitant with the creation of highly reactive oxygen species. Further exploiting the proposed reactive species, a real‐time spectroscopic study of the plasmonic response of Ag NPs in Ag/Si codoped glass samples was carried out during an in situ thermal processing. The temperature dependence of the Ag particle precipitation was studied in the 400°C–430°C range, from which an Arrhenius‐type plot allowed for estimating the activation energy of the process at 3.42 (±0.38) eV. Ultimately, the vanishing of the luminescence ascribed to Ag+ ions was observed in a heat‐treated sample, consistent with the high reactivity acquired by the glass matrix. Silicon thus appears promising for producing UV transparent glasses for high‐performance optics and for the reduction of Ag+ ions to produce Ag nanocomposites valuable for photonic (nanoplasmonic) applications.  相似文献   

12.
铝酸锶铕类长余辉荧光涂料的发光性能的研究   总被引:5,自引:0,他引:5  
袁莹  李学申 《涂料工业》1998,28(7):8-12
本文测定了两种长余辉荧光粉的吸收光谱和发射光谱。比较了其发光性能,并将其中性能较好的一种荧光粉加入常用的不饱和聚酯树脂和环氧树脂中,制得了可见光可激发的具有光致发光的性能的长余辉荧光涂料。研究了其光强衰减行为。讨论了荧光粉含量、涂层厚度与荧光光强、余辉时间等的关系  相似文献   

13.
Ultra‐fine TaB2 powders were synthesized by a liquid phase method using tantalum ethoxide, boric acid and sucrose as the sources of tantalum, boron, and carbon. The TaB2 precursor powders is a Ta–B–C–O network system, which were heat‐treated at lower temperature (1500°C) in normal argon atmosphere to obtain the TaB2 powders. XRD confirms the presence of only hexagonal TaB2, while EDS and XPS spectrums confirm the composition and element chemical states of TaB2. The TEM images show a platelet shape of the TaB2 powder and the monocrystal SAED pattern confirms the presence of hexagonal TaB2. Particle size distribution curves show that particle size of the TaB2 powders distributes in the range of 30‐160 nm, whose mean particle size is 106 nm.  相似文献   

14.
《Ceramics International》2023,49(3):4622-4630
Long persistent luminescence materials developed to commercial standards are primarily concentrated in the blue and green regions, with only a few in the red region. Red, as one of the three basic colors, can be mixed in various proportions with blue and green to yield various colors. The development of red persistent phosphors has a broader application potential but remains a challenge. A solid-state reaction method was used to synthesize new red persistent luminescent materials of Ba1-xSrxGa2O4:Sm3+ (x = 0–0.09). In BaGa2O4, both Sr2+ and Sm3+ preferentially occupy the Ba2+ site rather than the Ga3+ site. When exposed to UV light at 254 nm, the phosphors emit the characteristic red emission of Sm3+ at wavelengths ranging from 500 nm to 750 nm. After removing the UV light source, an intense red afterglow that lasted more than 1400 s was observed. The red afterglow signal reappears after a heating process. Doping Sr2+ reduces the trap depth and improves the red persistent luminescence significantly. Because the escaped electrons from traps compensate for the emission loss of Sm3+ during the heating process, the red phosphors have unimaginably luminescent thermal stability. Thus, the emission intensity at 200 °C is 1.6 times that at room temperature. The prepared red persistent phosphors show multimode luminescence, with the output signal being time and temperature sensitive, indicating that they are potential luminescent materials for anti-counterfeiting applications. Finally, a building-block strategy for advanced anti-counterfeiting applications of dynamic display information is proposed, with red persistent phosphors serving as an important component combined with upconversion phosphors of NaYF4:Yb3+, Tm3+, and green persistent phosphors of SrAl2O4:Eu2+, Dy3+.  相似文献   

15.
Mesoporous alumina (MA)was synthesized by sol–gel based evaporation‐induced self‐assembly process using aluminum isopropoxide as alumina source in the presence of three different types of triblock copolymers (TBCs), F68, F127, and L64. The role of different TBCs as surfactants on thermal, crystallization, textural, and microstructural properties of the alumina powders was studied. To understand the effects of different copolymers, the adsorption efficiency of the samples for Congo red (CR) was studied. For all the surfactants, the XRD results showed the stability of γ‐Al2O3 phase up to 1000°C for 1 h dwell time. A maximum value (431.8 m2/g) of Brunauer–Emmet–Teller surface area was obtained for the 400°C‐treated powder prepared from F68 surfactant. The transmission electron microscopy micrograph exhibited worm‐like mesoporous structures of the 400°C‐treated powders prepared from F68 and F127 surfactants. The adsorption performance for CR of the 400°C‐treated powders for different surfactants was in the order of F68 > F127 > L64. A tentative mechanism was illustrated to understand the roles of different block copolymers on the properties of the prepared MA.  相似文献   

16.
Enhanced luminescence in rare‐earth‐doped chalcogenide glass–ceramics is of great interest for the potential integrated optoelectronic devices. However, fundamental mechanism on the enhancement of luminescence upon crystallization remains largely unknown. We report the fabrication and characterization of wide transmission chalcogenide glass and glass–ceramics based on the 25GeS2·35Ga2S3·40CsCl:0.3Er glass composition, and discuss the mechanism of enhanced luminescence. By monitoring the 4I9/24I15/2 of Er3+ transition, up‐conversion luminescence of 12 times higher was observed in glass–ceramics compared with that in base glass. Electron paramagnetic resonance (EPR) and Raman scattering spectroscopies were employed to obtain the information of selective environment of Er3+ ions and microstructural evolution with the crystallization progress. Both of them evidenced that the enhanced up‐conversion luminescence was mainly related to the local environmental evolution from a mixed chlorine‐sulfur coordination to a low phonon energy chlorine coordination in the residual glassy matrix of glass–ceramics.  相似文献   

17.
A simple and effective solvent swelling method was developed for the preparation of poly(methyl methacrylate) (PMMA)/europium (Eu) complex hybrid nanospheres. Transmission electron microscopy and dynamic light scattering results indicate that the as‐prepared PMMA–Eu nanoparticles had a spherical morphology, with a narrow particle size distribution ranging from 100–200 nm. The PMMA–Eu nanospheres exhibited strong red emissions with a maximum peak at 612 nm under UV excitation, and the luminescence lifetime of the Eu complex was enhanced after it was swollen into PMMA nanospheres. Furthermore, the luminescence intensity of the PMMA–Eu nanospheres was very stable in various severe media, including aqueous solutions with various pHs, 1 mM Ca2+, 1 mM Fe2+, 1 mM Cu2+, 0.1M phosphate‐buffered saline solution, 1 mM citric acid solution, 1 mM lysine, and 1 mM glutamic acid. After the nanospheres were incubated at various temperatures for 1 h, the luminescence properties remained stable when the temperature was less than 40°C yet decreased slightly between 40 and 60°C and decreased rapidly at higher temperatures. These luminescent nanospheres were successfully applied in the luminescence‐sensing assay of hydrogen peroxide and exhibited a high sensitivity and broad linear concentration range. Because of their unique luminescence properties, the as‐synthesized PMMA–Eu nanospheres are expected to have great potential for use as luminescent labels or probes for long‐time imaging and analysis in which severe media situations are present. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
(82?x)NbO2.5–17.4LaO1.5xZrO2(NLZ) (x = 7.5, 10, 12.5, 15, 17.5, and 20) bulk glasses codoped with Er3+/Yb3+ were successfully fabricated by aerodynamic levitation method for the first time. The structure, thermal stability, and luminescent properties of the samples were investigated systemically by XRD, differential scanning calorimetry, and upconversion spectra. Under 980 nm laser excitation, all samples exhibited green and red upconversion emissions centered at 531, 546, and 674 nm. Results showed that the sample with 15 mol% ZrO2 obtained the most efficient upconversion luminescence and good thermal stability with the glass‐transition temperature as high as 743 °C. The effect of the addition of ZrO2 on the structure behavior and the phonon density in the glass was investigated by Raman spectra, which are the key factors for the upconversion luminescence intensity.  相似文献   

19.
Blends of polypropylene (PP) and silicone masterbatch (SMBPP)—a commercial formulation consisting of an ultrahigh molecular weigh polydimethylsiloxane (PDMS) dispersed in PP—were prepared by melt mixing in an internal mixer. Four binary blends with different SMBPP content and two ternary blends containing silane‐grafted polypropylenes (PP‐VTES) of different VTES content as compatibilizer were produced. The blends were analyzed by melting flow rate, rotational rheometry, scanning electron microscopy, and differential scanning calorimetry (DSC). In all blends, the SMBPP remained as dispersed phase in the continuous PP matrix. The addition of PP‐VTES reduced significantly the size of the SMBPP domains. Rheological and morphological data strongly indicate that the PP‐VTES acts only by lowering the interfacial tension of the system without generating strong interaction between SMBPP domains and the PP matrix. The dimensions of the SMBPP domains and the interfacial energy were observed to determine the characteristics of the pseudoplastic behavior of the blends in the melt state. For both binary and ternary blends, the SMBPP domains showed nucleating effect leading to an increase of the degree of crystallinity. However, the decrease in the interfacial energy and viscosity promoted by the addition of PP‐VTES to the system led to a more intense nucleating effect and to an increase of crystallization, melting temperatures, and melting enthalpy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 226–233, 2007  相似文献   

20.
Luminescent fine crystals of Y1.00?xEuxTiNbO6, x = 0–1.00 with high crystallinity were directly synthesized by mild hydrothermal method from weakly basic precursor solution mixtures of YCl3, EuCl3, TiOSO4, and NbCl5. Orthorhombic aeschynite‐type crystals in the range of 0.5–2.0 μm consisting of crystallites with 33–91 nm based on a complete solid solution in the YTiNbO6–EuTiNbO6 system were hydrothermally formed at 240°C for 5 h. A single phase of as‐prepared aeschynite‐type structure was maintained in all the (Y,Eu)TiNbO6 solid solution after heating at temperatures up to 1000°C for 1 h in air. In the range of composition x ≤ 0.6, the as‐prepared aeschynite‐type (Y,Eu)TiNbO6 solid solutions transformed to a single phase of euxenite structure after heat treatment at temperatures higher than 1100°C–1200°C. The as‐prepared (Y,Eu)TiNbO6 fine crystals in the range of composition x = 0.75–0.90 showed the strongest luminescence in the red spectral region: strong red (5D07F2 transition of Eu3+) and weak orange light (5D07F1) line spectra among the as‐prepared and heat‐treated samples. Another wet chemical synthesis route confirmed the advantage in directly synthesizing the (Y,Eu)TiNbO6 crystals through this hydrothermal method because heating at 1200°C for 1 h in air was necessary for obtaining crystalline (Y,Eu)TiNbO6 with sufficient luminescence intensity in a composition Y0.70Eu0.30TiNbO6 from amorphous powders that were formed via co‐precipitation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号