首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study, the time–temperature– transformation (TTT) cure diagrams of the curing processes of several novolac resins were determined. Each diagram corresponded to a mixture of commercial phenol–formaldehyde novolac, lignin–phenol–formaldehyde novolac, and methylolated lignin–phenol–formaldehyde novolac resins with hexamethylenetetramine as a curing agent. Thermomechanical analysis and differential scanning calorimetry techniques were applied to study the resin gelation and the kinetics of the curing process to obtain the isoconversional curves. The temperature at which the material gelled and vitrified [the glass‐transition temperature at the gel point (gelTg)], the glass‐transition temperature of the uncured material (without crosslinking; Tg0), and the glass‐transition temperature with full crosslinking were also obtained. On the basis of the measured of conversion degree at gelation, the approximate glass‐transition temperature/conversion relationship, and the thermokinetic results of the curing process of the resins, TTT cure diagrams of the novolac samples were constructed. The TTT diagrams showed that the lignin–novolac and methylolated lignin–novolac resins presented lower Tg0 and gelTg values than the commercial resin. The TTT diagram is a suitable tool for understanding novolac resin behavior during the isothermal curing process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The surface morphology of thermooxidative degraded polystyrene–isoprene–styrene (SIS) and polystyrene–butadiene–styrene (SBS) thermoplastic block copolymers was studied by scanning electron microscopy. Surface changes caused by heating the samples in a pyrolyzer for 15 and 30 min were presented in different micrographs. The morphological changes occurring due to the formation of polar groups and their crosslinking during the thermooxidative degradation are discussed. Morphological study of these thermally degraded polymer samples shows very good correlation with the thermodegradation results. The rate of thermodegradation is fast in case of SBS when compared with SIS block copolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2549–2553, 2006  相似文献   

3.
The surface morphology of thermooxidative‐degraded polystyrene–isoprene–styrene (SIS) and polystyrene–butadiene–styrene (SBS) thermoplastic block copolymers were studied by scanning electron microscopy. Surface changes caused by heating the samples in a pyrolizer for 15 and 30 min were presented in different micrographs. The morphological changes occurring due to the formation of polar groups and their crossing linking during the thermooxidative degradation are discussed. Morphological study of these thermally degraded polymer samples show very good correlation with the thermodegradation results. The rate of thermodegradation is fast in case of SBS compared with SIS block copolymer. ©2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

4.
ABCBA-type amphiphilic block copolymers comprising polydimethylsiloxane (PDMS), poly(ethylene oxide) (PEO), and heparin segments were synthesized by coupling reactions between end-functionalized oligomers. These multiblock copolymers were characterized to examine bulk properties using 1H-NMR, FTIR, end-group analysis, and sulfur elemental analysis. Block copolymers were further characterized in bulk using differential scanning calorimetry and X-ray diffraction measurements. The PDMS glass transition remains unchanged with increasing PEO content, indicating coexistence of pure PDMS with mixed phases. Furthermore, endothermic melting of the block copolymers shifts to higher temperatures and becomes more intense with increasing PEO molecular weight. Additionally, the crystallinity of the PEO segment in the block copolymers increases with increasing PEO molecular weight. The PEO melting endotherm peak shifts from near 318 to 323 K with annealing. In the cooling thermogram, the block copolymers exhibit two crystallization exotherms, one near 303 K and the other near 193 K, attributed to PEO and PDMS recrystallization and nucleation, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
4–Hydroxy–1, 8–naphthalimides and the isomer mixtures of'3–and 4–hydroxy–7 H–benzimidazo–(2, l–a)–benz(d, e)–isoquinolin–7–ones were coupled with diazotised arylamines to yield orange–red to bluish–red dyes having good coloration properties and excellent fastness to light on polyester fibres. Structure–property relationships in the dyes are discussed with respect to the nature of the substituents in the imide, imidazole and arylazo moieties.  相似文献   

6.
Deuterohaemin–alanine–histidine–threonine–valine–glutamic acid–lysine (DhHP‐6) is a synthetic heme‐containing peroxidase mimic that exhibits a high peroxidase enzyme activity. Compared to other microperoxidases, DhHP‐6 has a poor stability and tends to aggregate in aqueous solutions. In this study, poly(ethylene glycol) (PEG) was used to improve the properties of DhHP‐6. Factors that affected the PEGylation product yield were investigated. PEGylated DhHP‐6 (mPEG–DhHP‐6) was characterized by reversed‐phase high‐pressure liquid chromatography (RP‐HPLC), matrix‐assisted laser desorption/ionization time of flight mass spectra (MALDI‐TOF‐MS), and ultraviolet–visible (UV–vis) spectroscopy. The results show that the optimal PEGylation reaction conditions were achieved when the PEGylation was conducted in a borate buffer solution at pH 8.0 and 25°C for 4 h with a feeding ratio of 2 equiv of active PEG. After PEGylation, mPEG–DhHP‐6 showed a great improvement in its stability with little activity loss. The UV–vis spectra of DhHP‐6 and mPEG–DhHP‐6 in different pH solutions showed that the aggregation of DhHP‐6 was partly suppressed after PEGylation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Polypropylene (PP) nanocomposites reinforced with graphene nanoplatelets (GNPs) were prepared via melt extrusion. A special sheet die containing with two shunt plates was designed. The relationships among the flow field of the special die, exfoliation, and dispersion morphology of the GNPs in PP and the macroscopic properties of the nanocomposites were analyzed. Flow field simulation results show that the die with shunt plates provided a high shear stress, high pressure, and high velocity. The differential scanning calorimetry, X‐ray scattering, and electron microscopy results reveal that the nanocomposites prepared by the die with the shunt plates had higher crystallinity values and higher exfoliation degrees of GNPs. The orientation of the GNPs parallel with the extrusion direction was also observed. The nanocomposites prepared by the die with shunt plates showed a higher electrical volume conductivity, thermal conductivity, and tensile properties. This indicated that the high shear stress exfoliated the GNPs effectively to a thinner layer and then enhanced the electrical, thermal, and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44486.  相似文献   

8.
Structure and dielectric properties of oxide dielectrics with the composition of Bi1.5ZnNNb2.5−NO8.5−1.5N (with N=0.73 to 1.20) have been studied. These samples were treated at 1050 °C for 4 h. The cubic pyrochlore phase was found to be predominant as from X-ray diffraction and Raman spectra analysis. Lattice constant of the cubic pyrochlore and dielectric constant of the sample have been found to increase with the increase of Zn content. A model of the structural defects has been proposed to explain the stabilization of the pyrochlore structure. The limitation of composition for the formation of single cubic pyrochlore phase has been attributed to the distribution of oxygen defects.  相似文献   

9.
Su-Shia Lin   《Ceramics International》2007,33(8):1627-1630
Bi–Ge–Sb–Sn–Te phase-change recording films (Films A–D) were prepared by the co-sputtering of Bi30Ge10Te60, Ge20Sb80, Sb and Sn targets. The composition of the recording films was controlled by the dc power. The film composition, surface roughness and reflectivity were also closely related. Dynamic tests revealed that disks with Film C exhibited a low jitter value and a high modulation value after direct overwriting. Therefore, the composition of the recording film dominated the reversible recording properties of the phase-change optical disk.  相似文献   

10.
A facile and efficient synthesis route for the preparation of Bi–Fe–Co–Ni–Mn high entropy alloy films has been firstly reported in this work. The surface of the film is close-grained and the nanorods with high aspect ratios can be obtained by potentiostatic electrodeposition in the DMF (N,N-dimethylformamide)–CH3CN organic system. The effects of the deposition potential and the molar ratio of Bi(III) to transition metal ions (TMs(II)) in the organic system on the contents of Bi in the HE alloy were investigated. The annealed alloy structure is composed mainly of face-centered-cubic solid solution. The as-deposited alloys show soft magnetic behavior, and the annealed alloys exhibit hard magnetic properties.  相似文献   

11.
Glasses in the Na2O–CaO–SrO–ZnO–SiO2 system have previously been investigated for suitability as a reagent in Al‐free glass polyalkenoate cements (GPCs). These materials have many properties that offer potential in orthopedics. However, their applicability has been limited, to date, because of their poor strength. This study was undertaken with the aim of increasing the mechanical properties of a series of these Zn‐based GPC glasses by doping with nitrogen to give overall compositions of: 10Na2O–10CaO–20SrO–20ZnO–(40?3x)SiO2xSi3N4 (x is the no. of moles of Si3N4). The density, glass‐transition temperature, hardness, and elastic modulus of each glass were found to increase fairly linearly with nitrogen content. Indentation fracture resistance also increases with nitrogen content according to a power law relationship. These increases are consistent with the incorporation of N into the glass structure in threefold coordination with silicon resulting in extra cross‐linking of the glass network. This was confirmed using 29Si MAS‐NMR which showed that an increasing number of Q2 units and some Q3 units with extra bridging anions are formed as nitrogen content increases at the expense of Q1 units. A small proportion of Zn ions are found to be in tetrahedral coordination in the base oxide glass and the proportion of these increases with the presence of nitrogen.  相似文献   

12.
Thirty glasses of composition (in equivalent percent) 20‐xCa:xY:50Si:30Al:(100‐y‐z)O:yN:zF, with x = 0, 10; y = 0, 10, 20, and z = 0, 1, 3, 5, 7 were prepared by melting and casting. All glasses were X‐ray amorphous. Glass molar volumes (MV) decreased with nitrogen substitution for oxygen for all fluorine contents and, correspondingly, glass fractional compactness increased. Fluorine substitution of oxygen had virtually no effect on molar volume or fractional glass compactness for the three nitrogen contents tested. Young's modulus and microhardness were virtually unaffected by fluorine substitution for oxygen while nitrogen substitution for oxygen caused increases in these two properties. Glass‐transition temperature and dilatometric‐softening point values all decreased with increasing fluorine substitution levels, while increasing nitrogen substitution caused values for these thermal properties to increase. Correspondingly, the thermal expansion coefficient increased with fluorine and decreased with nitrogen substitution levels. Using property value differences between glasses containing fluorine and the corresponding glass containing 0 eq.% F enabled 24 data points to be used to determine the effect of fluorine on Tg,dil and TDS. The trends were linear with a gradient for both properties of the order of ?22°C (eq.% F)?1. For the nitrogen effect, 20 data points were analyzed for trend effects. As expected from earlier work, all trends had good linearity. Gradients were for Tg,dil and TDS +2.5°C (eq.% N)?1, which are fairly similar to previous results in oxynitride systems. All of the data collected and its analysis clearly shows that the substitution effects of fluorine for oxygen and nitrogen for oxygen are independent and additive with the fluorine substitution. The property trends of the glasses are discussed in terms of their implications for glass structure.  相似文献   

13.
The importance of alloys and blends has increased gradually in the polymer industry so that the plastics industry has moved toward complex systems. The main reasons for making polymer blends are the strengthening and the economic aspects of the resultant product. In this study, I attempted to improve compatibility in a polymer blend composed of two normally incompatible constituents, namely, acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC), through the addition of a compatibilizer. The compatibilizing agent, styrene–butadiene–styrene block copolymer (SBS), was added to the polymer blend in ratios of 1, 5, and 10% with a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by scanning electron microscopy and differential scanning calorimetry. Further, all three blends of ABS/PC/SBS were subjected to examination to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, Izod impact strength, hardness, heat deflection temperature, Vicat softening point, and melt flow index. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2521–2527, 2004  相似文献   

14.
In the present study two pozzolanic materials are used, Metakaolin (MK) and Fly Ash (PFA), as binary and ternary partial replacement binders with Portland cement (PC) to investigate their effect on the rate of heat evolution (dQ/dt in J/gh) during hydration, and the heat of hydration, (Q(t) in J/g). For binary PC–PFA blends PC hydration is enhanced in the very early stages of hydration, but at extended periods (up to 120 h) an increase in PFA replacement level causes a systematic reduction in heat output. For binary PC–MK blends the results suggest that the MK initially diminishes PC hydration but the subsequent pozzolanic reaction of MK increasingly contributes to the heat output causing some blends to exceed the heat output of the PC control. For both systems a principal controlling factor in the PC hydration rate (and the heat evolution rate) is the water requirement of the pozzolan, but for PC–MK blends the pozzolanic reaction of the MK makes a significant contribution to the heat output. However this reaction is controlled both by the availability of water and the supply of Ca2+ ions from the hydrating PC which introduces an increasing level of complexity to the heat output versus time profiles. When combining MK and PFA in ternary PC–MK–PFA blends the MK has a dominant influence on the heat output versus time profiles.  相似文献   

15.
Significant progress has been made in recent years regarding the photooxidation of olefin copolymers, but questions still remain. This paper reviews the progress and probes the photooxidative chemistry of ethylene–propylene (EP) and ethylene/propylene/diene monomer (EPDM) copolymers. Both stabilized and unstabilized polymer plaques were irradiated in a xenon are and the surface chemistry followed using infra-red spectroscopy. Model compounds were used to help elucidate the chemistry caused by unique structural features present in the copolymers. Volatile products evolved during photooxidation were determined giving valuable insight into the degradation chemistry.  相似文献   

16.
The possibility of replacing visual assessments of the colour change of dyed wool fabrics subjected to a standard washing test with instrumentally measured colour differences is examined. Washing tests on a wide range of dyeings on Superwash wool were carried out, and the colour difference AE between the washed and unwashed patterns was calculated in AN40 units. The results were compared with routine visual assessments of three observers. Good agreement on ‘pass-fail’ decisions was found between the instrumental and the visual techniques. The ‘pass-fail’ limit of 3–4 on the ISO Grey Scale for Assessing Change in Colour in the Superwash test corresponded to 2. 2 AN40 units over the colour range investigated.  相似文献   

17.
18.
Detection of long–range coupling constants, JNH, H5, in 100–MHz proton–magnetic–resonance spectra confirms the presence of intramolecular NH ON hydrogen bonding in some 2–nitrodiphenylamine disperse dyes. Measurements in polar and non–polar solvents on 2–nitrodiphenylamine and on twelve 4–substituted derivatives indicate weakening of the bonding, which is related to light fastness, when the 4–substituent is a strong electron acceptor.  相似文献   

19.
A study of the effect of temperature on a mixture of polymer and curative in the processing of rocket propellants is reported. Experimental viscosity of a hydroxyl‐terminated polybutadiene–toluene diisocyanate (HTPB–TDI) system was measured using a Brookfield viscometer model DV III. Viscosity showed dependence on temperature as well as time. The viscosity data of the HTPB–TDI system showed a linear relationship with temperature, with a change in slope at 45°C. The time dependence model showed a fourth‐order curve fit, which gave better results over the exponential model fit. The activation energy required for flow of the HTPB–TDI system was found to be 15.5 kJ/mol. Experimental viscosity measurements at various temperatures was also carried out on a hydroxyl‐terminated polybutadiene–dioctyl adipate –toluene diisocyanate (HTPB–DOA–TDI) system. The temperature dependence showed a decrease in viscosity with an increase in temperature up to 60 min, beyond which the viscosity increased. Viscosity showed a linear relation with temperature, with a change in the slope at 50°C instead of at 45°C for HTPB–TDI system. Beyond 50°C the data followed a polynomial model similar to that of the HTPB–TDI system, and the results matched well with the experimental data. The activation energy of the HTPB–DOA–TDI system increased with an increase in the binder weight ratio. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1331–1335, 2003  相似文献   

20.
The thermal behaviors and the flame‐retardancy of styrene–ethylene–butadiene–styrene–block copolymer containing various additives were studied. The combustion was measured by the Underwriter laboratory (UL) test and cone calorimeter test and thermogravimetric analysis and program‐mass spectroscopy were applied to analyze the thermal behaviors. The blend with halogen additives showed the best result in the UL test. However, the blend with red‐phosphorous was the best in the cone calorimeter test. As the styrene sequence in the copolymer tended to degradate at a lower temperature, the major scission products spouted out from the polymer surface originated from polystyrene. The shorter the ignition times of the blends with red‐phosphorous were, the lower the peak heat release rates were. It was an interesting phenomenon because it suggested that the chemical structure of the residue changed to more stable polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 156–161, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号