首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ultrafine fibers were spun from polyacrylonitrile (PAN) solution in N,N‐dimethylformamide using a homemade electrospinning setup. Fibers with diameter ranging from 80 to 340 nm were obtained. Fiber size and fiber size distribution were investigated for various concentration, applied voltage, and tip‐to‐collector distance using image analysis. The diameters of the electrospun fibers increase when increasing the solution concentration and decrease slightly when increasing the voltage and needle tip‐to‐collector distance. Porosity and air permeability are vital properties in applications of electrospun nanofibrous structures. In this study, effects of process parameters on the porosity and air permeability of electrospun nanoweb were investigated as well. Results of statistical analysis showed that solution concentration and applied voltage have significant influences on pore diameters. It was concluded that nanofiber diameter played an important role on the diameter of pores formed by the intersections of nanofibers. A more realistic understanding of porosity was obtained and a quantitative relationship between nanoweb parameters and its air permeability was established by regression analysis. Two separate models were constructed for predicting air permeability in relation to process parameters. Optimization of electrospinning process for producing nanoweb with desirable air permeability is well achieved by these models. The models presented in this study are of high importance for their ability to predict the air permeability of PAN nanoweb both by process or structure parameters. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The object of this work is to determine the most suitable values of process and solution parameters for electrospinning of polyacrylonitrile (PAN) nanofibers including solution concentration, applied voltage, and working distance between the needle tip and the collector plate. To investigate the effects of those parameters on the fiber morphology, nanofiber mat samples were produced by changing the value of parameters systematically. The scanning electron microscope images of these samples were analyzed to realize the effects of these parameters on the nanofiber morphology. Our results demonstrate that the diameter of the fibers increases with increasing concentration. However, the diameter reduces as the applied voltage and working distance between needle tip and the collector increase up to a certain value. In addition to this, viscosity and applied voltage have a strong effect on the uniformity and morphology of the nanofibers. Moreover, a relationship between spinning distance, voltage supplied, solution concentration, charge density, bead formation, and the diameter of the electrospun PAN nanofiber were established in the study. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The fabrication process of polymer fibers has been analyzed in various ways, and several studies have been conducted to develop new processes and optimize existing ones. Several studies have been conducted on the electrospinning process, which can easily fabricate nanofibers, and the development of materials manufactured through electrospinning has also been investigated. However, research on the nanofiber fabrication and processing of thermoplastic polymers, such as polypropylene (PP), polyethylene and polyethylene terephthalate, is relatively lacking. Therefore, research on nanofiber fabrication is essential. In this study, PP fibers were successfully manufactured through a melt electrospinning/blowing process, which combined melt blowing and electrospinning. To analyze the melt electrospinning/blowing process, the dynamic behavior of the spinning process was observed using a charge-coupled device camera in real time, and the effects of the different spinning conditions were compared and analyzed. As the hot air or high voltage was increased, the spinning jet area tended to increase. In addition, the average diameter of the fabricated fibers tended to decrease as a high voltage was applied at a hot air pressure of 0.01 MPa; conversely, the average diameter tended to increase at a hot air pressure of 0.03 MPa. A similar trend was observed for the tensile stresses in the PP web fabrics. The polymer fibers produced by this melt electrospinning/blowing process can be applied as a production process for nanomembranes, filters and battery separators. © 2022 Society of Industrial Chemistry.  相似文献   

4.
In the present study, the morphology and mechanical properties of nylon‐6 nanofibers were investigated as a function of molecular weight (30,000, 50,000, and 63,000 g/mol) and electrospinning process conditions (solution concentration, voltage, tip‐to‐collector distance, and flow rate). Scanning electron micrographs (SEM) of nylon‐6 nanofibers showed that the diameter of the electrospun fiber increased with increasing molecular weight and solution concentration. An increase in molecular weight increases the density of chain entanglements (in solution) at the same polymer concentration; hence, the minimum concentration to produce nanofibers was lower for the highest molecular weight nylon‐6. The morphology of electrospun fibers also depended on tip‐to‐collector distance and applied voltage concentration of polymer solution as observed from the SEM images. Trends in fiber diameter and diameter distribution are discussed for each processing variable. Mechanical properties of electrospun nonwoven mats showed an increase in tensile strength and modulus as a function of increasing molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this study, a conical wire coil was used as spinneret to launch a novel needleless electrospinning. Multiple polymer jets were observed on the surface of the coil in the electrospinning process. Productivity of the nanofibers can be enhanced to >2.5 g/h by using this novel nozzle. The fiber productivity and diameter together with diameter distribution were dependent on the concentration of the polymer solution, applied voltage, and collecting distance. This novel concept of using wire coil as the electrospinning nozzle depicts a model of large‐scale needleless electrospinning system for nanofiber production. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
In this study, electrospun carbon nanofibers hybridized with silicon oxide (SiOx) are prepared by using a syringeless electrospinning system of polyacrylonitrile (PAN) solution containing tetraethylorthosilicate (TEOS) via a sequential pyrolysis process. The syringeless electrospinning system provides a large number of composite nanofibers in a short time, and the obtained composite nanofibers exhibit uniform diameter and morphology. The composite nanofiber is converted into a carbon nanofiber containing SiOx via a simple pyrolysis. The obtained SiOx‐carbon nanofiber mat exhibits higher charge/discharge capacity than a general carbon nanofiber, and it provides more stable retention than single crystalline silicon materials. Thus, the mass‐production of a SiOx‐carbon nanofiber from syringeless electrospinning is a promising method to produce anodic materials for Li‐ion batteries.  相似文献   

7.
A solution blow spinning technique was developed using elements of both electrospinning and melt blowing technologies as an alternative method for making non‐woven webs of micro‐ and nanofibers with diameters comparable with those made by the electrospinning process with the advantage of having a fiber production rate (measured by the polymer injection rate) several times higher. The diameters of fibers produced ranged from 40 nm for poly(lactic acid) to several micrometers for poly(methyl methacrylate). This solution blow spinning method uses a syringe pump to deliver a polymer solution to an apparatus consisting of concentric nozzles whereby the polymer solution is pumped through the inner nozzle while a constant, high velocity gas flow is sustained through the outer nozzle. Analysis of the process showed that pressure difference and shearing at the gas/solution interface jettisoned multiple strands of polymer solution towards a collector. During flight, the solvent component of the strands rapidly evaporates forming a web of micro and nanofibers. The effect of injection rate, gas flow pressure, polymer concentration, working distance, and protrusion distance of the inner nozzle was investigated. Polymer type and concentration had a greater effect on fiber diameter than the other parameters tested. Injection rate, gas flow pressure, and working distance affected fiber production rate and/or fiber morphology. Fibers were easily formed into yarns of micro‐ and nanofibers or non‐woven films that could be applied directly onto biological tissue or collected in sheets on a rotating drum. Indeed, virtually any type of target could be used for fiber collection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Solution blowing (SB) is a promising and scalable approach for the production of nanofibers. Air pressure, solution flow‐rate, and nozzle‐collector distance were determined as effective process parameters, while solution concentration was also reported as a material parameter. Here we performed a parametric study on thermoplastic polyurethane/dimethyl formamide (TPU/DMF) solutions to examine the effect of such parameters on the resultant properties such as fiber diameter, diameter distribution, porosity, and air permeability of the nanofibrous webs. The obtained solution blown thermoplastic polyurethane (TPU) nanofibers had average diameter down to 170 ± 112 nm, which is similar to that observed in electrospinning. However, the production rate per nozzle can be 20 times larger, which is primarily dependent on air pressure and solution flow rate (20 mL/h). Moreover, it was even possible to produce nanofibers polymer concentrations of 20%; however, this increased the average nanofiber diameter. The fibers produced from the TPU/DMF solutions at concentrations of 20% and 10% had average diameters of 671 ± 136 nm and 170 ± 112 nm, respectively. SB can potentially be used for the industrial‐scale production of products such as nanofibrous filters, protective textiles, scaffolds, wound dressings, and battery components. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43025.  相似文献   

9.
In the electrospinning of polymer nanofibers, an electrically driven jet of polymer solution travels to a grounded target to be collected. The morphology of the resulting nanofibers can be manipulated through process parameters, though little work has been done to correlate electrospinning parameters with those of the free‐jet flow of pure liquids. This is essential when the nanofibers hold entrained beaded structures indicative of jet breakup. The effects of applied voltage and solution concentration on the fiber morphology of electrospun aqueous solutions of poly(ethylene oxide) were investigated. Solution concentrations of 4–8 wt % were used along with voltages of 4.5–11 kV to produce nanofibers with and without entrained beads. It was determined that the calculated Weber number for each condition correlated well with the resulting morphology. These results may suggest that Weber number may also be used to predict nanofibers morphology in the electrospinning of other polymer systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Natural silk, from Bombyx mori solutions were electrospun into nanofibers, with diameters ranged from 60 to 7000 nm. The effects of electrospinning temperature, solution concentration and electric field on the formation nanofibers were studied. Optical and scanning electron microscope were used to study the morphology and diameter of electrospun nanofibers. It was observed that the nanofibers became flattened with ribbon‐like shape with increasing the electrospinning temperature. The nanofiber diameter increases with the increase in the concentration of silk solution at all electrospinning temperature. With increasing the voltage of electric field at 50°C, morphology of the nanofibers changes from ribbon‐like structure to circular cross section. Referring to the literature the probable mechanism responsible for the change of morphology is pointed out. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

12.
Nanofibers produced by electrospinning method are widely used for drug delivery, as tissue scaffolding materials and filtration purposes where specific pore characteristics are required. For continued growth in these areas, it is critical that the nanofibers be properly designed for these applications to prevent failure. Most of the current methods only provide an indirect way of determining pore structure parameters and contain inherent disadvantages. In this study, we developed a novel image analysis method for measuring pore characteristics of electrospun nanofiber webs. Five electrospun webs with different pore characteristics were analyzed by this method. The method is direct, very fast, and presents valuable and comprehensive information regarding pore structure parameters of the webs. Two sets of simulated images were generated to study the effects of web density, fiber diameter and its variations on pore characteristics. The results indicated that web density and fiber diameter significantly influence the pore characteristics, whereas the effect of fiber diameter variations was insignificant.  相似文献   

13.
以聚丙烯腈与二甲基甲酰胺为原料配制纺丝溶液,采用静电纺丝技术制备玻璃纤维/聚丙烯腈纤维/玻璃纤维三层复合滤材,研究了纺丝溶液浓度与纺丝电压等参数对纤维形貌及尺寸的影响,分析了复合滤材的过滤性能. 结果表明,控制不同纺丝溶液浓度可得形貌不同的纤维,且溶液浓度越大纤维尺寸越大;纺丝电压对纤维形貌的影响较小,但增加纺丝电压使静电纺纤维层的孔径减小. 相比玻璃纤维滤材,复合滤材过滤效率明显提升,稳态效率最大可提升21%,最易穿透粒径效率最大可提升39%,但复合滤材孔径较小时,过程压降增加了一段跳跃阶段,纳米纤维层表面形成液膜,使复合滤材稳态压降升高.  相似文献   

14.
Nanofibers of poly(vinylidene fluoride‐trifluoroethylene)/polyaniline‐polystyrene sulfonic acid (PVDF‐TrFE/PANi‐PSSA) were fabricated in air at room temperature using electrospinning, with the thinnest fiber having a diameter of ~ 6 nm. This is a cheap, fast, and reliable process for generating PVDF‐TrFE/PANi‐PSSA composite nanofibers. The presence of conducting PANi‐PSSA increased the charge density of the solution and assisted in the fabrication of PVDF‐TrFE nanofibers at low polymer concentrations in dimethylformamide without the beading effect. Ultraviolet and visible spectroscopy showed that PANi‐PSSA was well incorporated into the PVDF‐TrFE solution with no polymer segregation or degradation. A scanning electron microscope was used for morphological characterization of the fibers and a profilometer used to determine the fiber diameter. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Electrospinning is a relatively simple method to produce submicron fibers from solutions of different polymers and polymer blends. The extensive application in future of electrospinning nanofibers is filtration. In this article, the filtration properties of electrospinning nanofibers were investigated. During the experiments, nanofibers layers with different area weight were electrospun on the spunbonded or meltblown sublayers. Fiber diameter, pore diameter, filtration efficiency as well as filtration resistance of nanofibers web and sublayers were measured, respectively, through a series of experiments. The results show that the fiber diameter of nanofibers is much smaller than that of sublayers. It is also found that the pore diameter of nanofibers web is much smaller than sublayers and coefficient variation of the pore diameter of nanofibers web is much smaller than sublayers. Moreover, the filtration efficiency and filtration resistance of sublayers are lower than nanofibers webs. The balance between efficiency and press drop is also investigated in the article. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1285–1290, 2006  相似文献   

16.
The properties of polymeric nanofibers are determined by their internal structure. Although electrospun nanofibers have been widely applied in many fields, their internal structure is still not extensively reported, especially for amorphous nanofibers, which cannot be analyzed by studying the morphology of the crystal lamellar such as the crystalline nanofibers. In this study, the internal structure of electrospun amorphous polycarbonate (PC) nanofibers is investigated. The phase contrast and transmission electron microscopy images show that PC nanofibers exhibit a cylinder‐like structure composed of molecular chains that are highly oriented along the fiber axis. This interesting cylinder‐like internal structure may be the result of evaporation‐induced phase separation in the polymer solution jet and the high strain rate in the electrospinning process. The variation of mechanical properties of PC nanofibers agrees well with the varied internal structure of the nanofibers with different fiber diameters. Due to the high degree of molecular orientation, as‐spun PC nanofibers exhibit superior elastic modulus (6.2 GPa) and strength (780 MPa). The cylinder‐like structure provides an insight into the internal structure of an amorphous electrospun nanofiber, which helps optimize the mechanical performance of amorphous nanofibers and fiber‐based devices.

  相似文献   


17.
静电纺丝制备纳米纤维的进展及应用   总被引:3,自引:0,他引:3  
简述了静电纺丝的制备原理和影响静电纺丝纤维成形的主要工艺因素;介绍了静电纺丝法制备高分子聚合物、生物大分子、无机物纳米纤维的最新进展,以及这些纳米纤维在过滤、传感器、超疏水性材料、生物医用功能材料、纳米模板等领域的应用;指出静电纺丝制备纳米连续长丝技术亟待发展。  相似文献   

18.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。  相似文献   

19.
The electrospinning of the polycarbonate (PC) solutions was performed for the variable electrospinning parameters such as polymer concentration, solvent composition, applied voltage, flow rate, and take‐up velocity in order to evaluate changes of morphology, mechanical properties, and flammability of the aligned PC nanofibers as a function of the electrospinning parameters. It was found that the ratio of THF/DMF solvent in the electrospinning parameters had a major effect on the spinnability and fiber morphology. Furthermore, it was confirmed that the mechanical properties were dependent upon the fiber morphology. The spinnability of the PC solutions with a lower THF ratio in THF/DMF solvent was poor. The aligned electrospun PC fiber with the best morphology was made in the range of polymer concentration of 22%, solvent ratio of 50:50 THF : DMF, applied voltage of 14 kV, flow rate of 0.050 ml/m, and a take‐up velocity of 7.3 m/s. The ultimate strength and initial modulus of the 80% drawn 22% PC fiber were 64 ± 2 MPa (commercial 55–75 MPa) and 1.9 ± 0.1 GPa. The heat release capacity (HRC) of the 22 and 25% PC fiber were 275 ± 27 J/g K and 198 ± 1 J/g K. It was found that the flame resistance of the electrospun PC nanofiber was superior to that of the PC raw material (HRC ~360 J/g K). POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
A modified air-jet electrospinning (MAE) setup was demonstrated for contributing to the large-scale nanofibers production. With this single nozzle air-jet electrospinning device, the productivity of nanofibers can be increased more than forty times as compared with using the single-needle electrospinning (SNE) setup. When compared with other needle-less electrospinning setups, the benefits of this setup include ability to keep stable concentration of electrospun solution and to produce more uniform and thinner fibers, controlling of the jets formed speed and position, higher throughput, lower critical voltage, easier assembling, simpler operation, and so on. Four different parts of the fiber generator were, respectively, charged as electrospun electrodes to produce fibers. The distributions of the electric field with different electrodes were simulated and investigated for explaining the experimental results including the fibers productivity, the deposition area of nanofiber mats, as well as the surface morphology of the fibers. When the whole nozzle was charged, as compared with charging other electrodes, the MAE system produced thinner fibers with larger standard deviation on a much larger scale. By reduction of charged area, the received fibers presented lower productivity and thicker diameter with lower standard deviation. Especially, when a half of the nozzle was charged, the deposition area of nanofiber mats was larger than charging other electrodes. Besides, when a half of the nozzle was charged, the influences of electrospinning parameters such as applied voltage, collecting distance and the flow rate of air on nanofibers morphology were also investigated. Furthermore, based on this spinning unit, multi-nozzle air-jet electrospinning setup can be designed for larger production of nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号