首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bidirectional power flow is needed in many power conversion systems like energy storage systems, regeneration systems, power converters for improvement of the power quality and some DC‐DC applications where bidirectional high power conversion and galvanic isolation are required. The dual active bridge (DAB) is an isolated, high voltage ratio DC‐DC converter suitable for high power density and high power applications, being a key interface between renewable energy sources and energy storage devices. This paper is focused on the modeling and control design of a DC‐DC system with battery storage based on a DAB converter with average current mode control of the output current and output voltage control. The dynamic response of the output voltage to load steps is improved by means of an additional load‐current feed‐forward control loop. An analytical study of the load‐current feed‐forward is presented and validated by means of both simulations and experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A lot of work has taken place into the design and control of DC–DC converters, and various methodologies have been proposed. While traditionally only P or PI controllers have been employed, recent applications that require a fast transient performance impose the usage of the derivative, D, term. As it is well known, using the D‐term can cause numerous problems in such converters that greatly downgrade their performance and lifetime. Having said that, in this paper, we first prove that by using the D‐term, it is possible to increase the stability margin (and hence keep a low current ripple), and then, we present a novel method to tune the PID controller that guarantees a fast and stable response over a wide range of parameter values without using an unreasonably high value of the derivative gain that magnifies the presence of noise in the system. The controller is designed utilising Filippov's method, and a simple and easy to implement strategy is proposed. Furthermore, an adaptive PID controller is designed whose gains are changed depending on the value of the supply voltage or output load. Another important contribution of this work is the derivation of the saltation matrix when the switching manifold is discontinuous, the complete proof is presented, and the results validated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a graph‐theoretic approach to analyse and synthesize switch mode DC–DC converters. The result is based on the state‐space averaging equation and the fundamental graph theory. Hence our proposed method is applied to various kinds of DC–DC converters with two switches and topological conditions for two‐switch DC–DC converters are obtained systematically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A generalized model of the dynamics (GMD) of DC‐DC power electronic converters (PECs) is discussed in this paper. It is a geometrical piecewise‐affine continuous‐time model. The general idea of the GMD is to determine the local dynamic behavior of trajectories on the faces of the PEC commutation structure, which is a geometrical model of its commutation. This allows us to establish the direction of PEC dynamics on these faces. It can be either ‘entering’ into specific regions in state space or ‘exiting’ from them. Therefore, the local PEC dynamics can be treated as logical (two‐state). In practice, the GMD can be used for the analysis of PEC practical stability, which is a completely different concept from the concept of PEC stability in the classical Lyapunov sense. An outline of the design‐oriented approach to PEC practical stability analysis, which is based on the GMD, has also been presented. As illustrative examples, the GMD of a boost converter under peak current‐mode control and its application are presented. These examples show that the Lyapunov stability of a given PEC does not imply its practical stability, and that the results of PEC Lyapunov stability analysis and practical stability analysis are complementary to each other. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The frequency‐domain‐based realization condition related to a novel non‐invasive chaos control is presented in this paper. According to the common piecewise‐linear characteristics of PWM‐controlled DC–DC converter system, a general expression for its Jacobian matrix is derived for optimizing the control parameters of the proposed non‐invasive chaos control. The relevant simulation and experiment results about the application of the chaos control to a voltage‐mode Buck converter are given, which confirm the feasibility of the parameter‐optimization method and the validity of the proposed non‐invasive chaos control. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A novel high‐efficiency transformerless buck–boost DC–DC converter is proposed in this paper. The presented converter voltage gain is higher than that of the conventional boost, buck–boost, CUK, SEPIC and ZETA converters, and high voltage gain can be obtained with a suitable duty cycle. The voltage stress across the power switch is low. Hence, the low on‐state resistance of the power switch can be selected to decrease conduction loss of the switch and improve efficiency. The input current ripple in the presented converter is low. The principle of operation and the mathematical analyses of the proposed converter are explained. The validity of the presented converter is verified by the simulation results in PSCAD/EMTDC software and experimental results based on the prototype circuit with 250 W and 40 kHz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a linearly adaptive gate drive technique to improve the light‐load efficiency of DC–DC converters. The optimal‐driving voltages of the power MOSFETs for reducing gate‐driving loss can be well modeled by a linear function of the load current. By scaling the gate drive voltage dynamically with respect to load current, the light‐load efficiency can be enhanced. The experimental result shows that the proposed gate drive technique can attain about 9% incremental light‐load efficiency enhancement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A step‐up pulse width modulation (PWM) direct current (DC)–DC converter is presented in this paper, which has its origin in quasi Z‐source inverter. Analysis of this converter in steady state is presented, and relevant expressions are derived for the proposed converter operating in continuous conduction mode. The power loss expressions for each component of the converter are derived, and thereby, obtained expressions for overall converter efficiency are presented. Further, a dynamic model is derived to design an appropriate controller for this converter. The simulation and experimental results are presented to support the theoretical analysis. The advantages such as continuous input current, high step‐up gain at lower duty ratio, and common ground for source, load, and switch makes the converter suitable for renewable energy applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A new shunt current shaping scheme for multiple paralleled dc–dc converters is proposed in this paper. The current command for the shunt current shaper is indirectly obtained by forcing the source current to follow the demanded sinusoidal signal. The amplitude of the demanded sinusoidal source current that is in‐phase with the source voltage can be determined from the sensed load currents of the post‐stage dc–dc converters. Neither high‐order filters nor time‐consuming computations are required. The shunt current shaper supplies all the harmonics and the out‐of‐phase fundamental of the distorted input current and the power source only supplies the in‐phase fundamental component. Experimental results on a prototype system verify the feasibility of the presented scheme. The implemented shunt current shaper demonstrates an efficiency of 92% and a nearly unity power factor at the utility side. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Two main methods for controlling switching converters exist in the literature. The direct one is the voltage mode control, which suffers from some disadvantages such as slow response to load variations and an input voltage‐dependent total loop gain. The current mode control can overcome these problems but at the expense of extra cost and more complex control design. V1 concept is a new promising control technique for designing voltage mode control of buck‐type converters with an optimal response similar to current mode control. In this paper, the dynamics and the stability of buck converters under V1 control are studied. In particular, subharmonic oscillation limits in the parameter space are addressed. First, a closed‐loop state‐space model is derived and then used to formulate an analytical matrix‐form expression for predicting the stability limit of the system. Using this expression, multi‐parametric stability boundaries are obtained. It is shown that the equivalent series inductance of the output capacitor can narrow the stability region. It is also demonstrated that the integral action in the feedback loop of a V1‐controlled buck converter has a negligible effect on the subharmonic oscillation boundary. The theoretical analysis is validated through numerical simulation of the circuit‐level switched model of the system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A switch‐mode boost DC–DC converter has been developed to compensate for the IR‐drop because of the finite resistance of a charging cable. The boost ratio of the DC–DC converter is adaptively controlled by an IR‐drop sensing circuit to provide the required voltage level to a battery charger regardless of the cable resistance. Implemented in a 0.18 µm BCDMOS process, the IR‐drop compensating switch‐mode boost DC–DC converter occupies 6.2 mm2 active area and shows the 93.2% peak efficiency. The proposed IR‐drop compensating boost converter can be applied to compensate for the IR‐drop of any type of charging cables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
Bidirectional DC–DC converter with phase‐shift control is commonly used for hybrid electric vehicle and fuel‐cell vehicle applications. This converter is characterized by simple circuit topology and soft‐switching implementation without additional devices. Despite these advantages, the efficiency is poor at light load condition because of high switching and conduction losses caused by high RMS inductor current. To achieve zero‐voltage switching (ZVS) for all power MOSFETs, a constant offset inductor current is maintained to conduct the antiparallel body diodes before MOSFETs turn on. A control strategy of combining duty ratio and phase‐shift modulation is proposed to reach the constant offset current. By reaching the constant offset current, the RMS inductor current can be reduced significantly, and ZVS can be achieved in all load variation ranges, resulting in high efficiency. A 2.5‐kW prototype is implemented to verify the control scheme, and a minimum efficiency of 97.3% is achieved at light load condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the dynamical behavior of a full bridge DC–AC buck inverter controlled by fixed frequency and PWM is studied. After showing that the system can undergo both period‐doubling and Neimark–Sacker bifurcation at the fast scale (switching period) by using the exact switching model, an exact solution discrete‐time model able to predict both instability phenomena is derived. The model is obtained without making the quasi‐static approximation and it can be used to obtain the useful operation region in the multi‐dimensional design parameter space from time domain simulations in a very fast and accurate manner. Based on the study of the system, some design guidelines are provided. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a fast switching fault diagnostic scheme is proposed for low‐power pulse width modulation (PWM) DC–DC converters operating in different conduction modes. The outstanding feature of the proposed scheme is that no additional sensing circuits are needed. This is achieved by using the differential of output ripple voltage and the switch gate driver signal for diagnosis. Since the output voltage has to be normally measured for control purposes and the PWM signals are known to the controller, no additional sensors are needed in the proposed scheme. Moreover, based on the real‐time output voltage measurement and switch gate driver signal, the characteristics of switch open‐ and short‐circuit faults can be rapidly extracted, specifically, in less than one switching cycle. Besides, the fault detection scheme can be implemented by a low‐cost logical hardware circuit, which can be integrated into the control unit. The fault diagnosis principle, design considerations, and implementation of the detection scheme are discussed in this paper. Experimental results show that the fault detection system can detect the switching fault in four‐tenths of the switching period. Besides, the proposed method can be used in the applications where the output voltage ripple rate is more than 4%, which covers most situations. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

17.
An energy‐harvesting system requires an energy‐storing device to store the energy retrieved from the surrounding environment. Rechargeable batteries are commonly used to store this energy; however, because of the limited number of charge/discharge cycles, they need to be periodically replaced. A supercapacitor, which has, ideally, a limitless number of charge/discharge cycles, avoids this problem. In this case, it is required for the power management unit to produce a constant output voltage as the supercapacitor discharges. This paper presents a system with a multiratio switched capacitor DC–DC converter, in a 130‐nm technology, with a maximum output power of 2 mW, a maximum efficiency of 79.63% and a maximum output ripple, in the steady state, of 23 mV for an input voltage range of 2.3–0.87 V. The proposed converter has four operation states, to maximize its efficiency, that correspond to the conversion ratios of 1/2, 2/3, 1/1 and 3/2. Its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use two asynchronous time machines to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system were verified by using electrical simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A novel single switch two diode wide conversion ratio step down/up converter is presented. The proposed converter is derived from the conventional single‐ended primary inductor converter (SEPIC) topology, and it can operate as a capacitor‐diode voltage multiplier, which offers simple structure, reduced electromagnetic interference (EMI), and reduced semiconductor voltage stress. The main advantages of the proposed converter are the continuous input/output current, higher voltage conversion ratio, and near‐zero input and output current ripples compared with the conventional SEPIC converter. The absence of both a transformer and an extreme duty cycle permits the proposed converter to operate at high switching frequencies. Hence, the overall advantages will be: higher efficiency, reduced size and weight, simpler structure and control. The theoretical analysis results obtained with the proposed structure are compared with the conventional SEPIC topology. The performance of the proposed converter is verified through computer simulations and experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Conventionally, a high accuracy operational amplifier (OPA)‐based current sensor is used for sensing current message under a full load range, which increases the cost characteristic. Instead of a high accuracy OPA‐based current sensor, this paper describes using a switching inductor quasi‐V2 hysteretic control boost dc–dc regulator with a proposed current‐sensing technique named emulated‐ramp feedback (ERF), which can improve transfer efficiency under a full load range. Two control systems are presented in this paper. The first system, a hysteretic voltage control switching boost converter with ERF, achieves the hysteretic voltage control in a boost regulator and lowers the cost characteristic without using compensator. The second system, a quasi‐V2 hysteretic voltage control switching boost converter with ERF, demonstrates the compatibility of ERF technique in rippled‐based control boost converters. The regulator was implemented with TSMC 0.25‐µm HV CMOS process. Experimental results show the second system can work under the specification of 5–12 V with a 0 to 300‐mA load range. Additionally, this system attained a recovery time is 27/95 µs for step‐up/step‐down in a 100 to 300‐mA continuous conduction mode load current, and a peak efficiency of 92.1% with a chip area of only 1.014 mm2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents new ideas and insights towards a novel optimal control approach for power electronic converters. The so‐called stabilizing or Lyapunov‐based control paradigm is adopted, which is well known in the area of energy‐based control of power electronic converters, in which the control law takes a nonlinear state‐feedback form parameterized by a positive scalar λ . The first contribution is the extension to an optimal Lyapunov‐based control paradigm involving the specification of the optimal value for the parameter λ in a typical optimal control setting. The second contribution is the extension to more flexible optimal switching‐gain control laws, where the optimal switching surfaces are parameterized by a number of positive scalars λ j . Systematic derivation of gradient information to apply gradient‐descent algorithms is provided. The proposed techniques are numerically evaluated using the exact switched model of a DC–DC boost converter. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号