首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution, 2‐(9H‐carbazol‐9‐yl) ethyl methacrylate (CzEMA) monomer was chemically synthesized. The monomer characterization was performed by FT‐IR, 1H‐NMR, 13C‐NMR, and melting point analysis. The electropolymerization of CzEMA was studied onto carbon fiber microelectrodes (CFMEs) as an active electrode material in 0.1M sodium perchlorate (NaClO4)/acetonitrile (ACN) solution. The electropolymerization experiments were done from 1 mM to 10 mM. The detailed characterization of the resulting electrocoated Poly (CzEMA)/CFME thin films was studied by various techniques, i.e., cyclic voltammetry (CV), Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The effects of initial monomer concentrations (1, 3, 5, and 10 mM) during the preparation of modified electrodes were examined by EIS. Capacitive behaviors of modified CFMEs were defined via Nyquist, Bode‐magnitude, and Bode‐phase plots. Variation of capacitance values by initial monomer concentration and specific capacitance values are presented. The highest specific capacitance value electrocoated polymer thin film by CV method in the initial monomer concentration of 5 mM with a charge of 52.74 mC was obtained about 424.1 μF cm?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Vinyltriethoxysilane was used to modify the surface of cotton to provide polymerizable vinyl groups on the fiber surface. An ultraviolet‐absorbing monomer, 2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate, was polymerized on the vinyltriethoxysilane‐treated fabric to prepare ultraviolet‐protective cotton. The effects of the amounts of the solvent, silane coupling agent, and 2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate on the surface morphology and ultraviolet‐protection factor of the treated cotton fabric were investigated. With a suitable process, poly{2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate} was successfully coated onto the fabric, and it significantly reduced ultraviolet transmission through the fabric, resulting in a cotton fabric with excellent ultraviolet‐protection properties. The use of a silane coupling agent helped to ensure a polymer coating with good uniformity and good resistance to washing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
BACKGROUND: Carbazole derivatives are well known to exhibit interesting electro‐ and photo‐active properties due to their hole‐transporting ability, strong absorption in the ultraviolet spectral region and blue‐light emission. One of the most widely studied materials among carbazole‐containing oligomers is poly[9‐(2,3‐epoxypropyl)carbazole] (PEPK). The main field of application of this oligomer is electrophotographic microfilming. It is also used for the manufacture of multicolour slides and in the photothermoplastic recording of information. Unfortunately, due to its high ionization potential, which reaches 5.86 eV, the possibilities of application of this compound in optoelectronic devices are rather limited. RESULTS: PEPK‐based charge transporting oligomers, incorporating hydrazone moieties, are reported. The oligomers were prepared by chemical modification of PEPK. The materials obtained were examined using various techniques including differential scanning calorimetry and ultraviolet, infrared and NMR spectroscopy. Electron photoemission spectra of layers of the synthesized oligomers showed ionization potentials (Ip) in the range 5.4–5.5 eV. CONCLUSION: The synthesized oligomers possess a larger π‐conjugated system and show ionization potentials of ca 5.4 eV. Therefore, they are more suitable for use in optoelectronic devices with quicker photoresponse than unmodified PEPK. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
A series of polyimide (PI) thin films were synthesized based on bis[3,5‐dimethyl‐4‐(4‐aminophenoxy)phenyl]methane and conventional aromatic dianhydrides. The structures and properties of the thin films were measured with Fourier transform infrared, NMR, thermogravimetric analysis, dynamic mechanical analysis, and impedance analysis. The PI films exhibited glass‐transition temperatures in the range of 211–300°C and possessed initial thermal decomposition temperature reaching up to 457–482°C in air and 461–473°C in nitrogen. Some PI films had high solubility in organic solvents such as 1‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethyl sulfoxide, m‐cresol, tetrahydrofuran, and CHCl3. The mechanical properties of these films were also examined. The dielectric constants of the films were in the range of 2.8–3.3 at 25°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1265–1270, 2007  相似文献   

5.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The electropolymerization of 4‐methyl carbazole‐3‐carboxylic acid was successfully performed on a stainless steel (316L) surface with lithium perchlorate/acetonitrile as the supporting electrolyte. The corrosion resistance of the new coating, poly(4‐methyl carbazole‐3‐carboxylic acid) (PCz), was investigated. To this end, potentiodynamic polarization curves, open circuit potentials, and electrochemical impedance spectroscopy were used to evaluate the capacity of the PCz coating to protect the steel surface. The corrosion tests indicated that PCz exhibited effective anodic protection in a corrosive test solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A novel monomer, 2,6‐di(thiophene‐2‐yl)‐3,5bis(4‐(thiophene‐2‐yl)phenyl)dithieno[3,2‐b;2',3'‐d]thiophene ( Th4DTT) has been synthesized and used as an electro‐active material. It has been electropolymerized onto glassy carbon (GC) electrode in sodium dodecyl sulfate (SDS) solution (0.1 M) together with multi‐walled carbon nanotubes (MWCNT). A good capacitive characteristics for P(Th4DTT)/MWCNT composite has been obtained by electrochemical impedance spectroscopy (EIS), which is, to our best knowledge, the first report on capacitor behavior of a dithienothiophene. A synergistic effect has been resolved by Nyquist, Bode‐magnitude—phase and admittance plots. Specific capacitance of the conducting polymer/MWCNT, calculated from cyclic voltammogram (CV) together with area and charge formulas, has been found to be 20.17 F g?1. Long‐term stability of the capacitor has also been tested by CV, and the results indicated that, after 500 cycles, the specific capacitance is 87.37% of the initial capacitance. An equivalent circuit model of Rs(C1(R1(Q(R2W))))(C2R3) has been obtained to fit the experimental and theoretical data. The double layer capacitance (Cdl) value of P(Th4DTT)/MWCNT (4.43 mF cm?2) has been found to be 25 times higher than P(Th4DTT) (Cdl= 0.18 mF cm?2). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40061.  相似文献   

8.
Poly(3‐dodecylthiophene) (P3DDT) and poly(3‐decylthiophene) (P3DT) with high contents of head‐to‐tail linkages (86 and 85%, respectively) were synthesized in high yields by a facile oxidative polymerization with ferric chloride in chloroform at room temperature. We believe that the low concentration and ultraslow addition of monomers to ferric chloride contributed to the high regioregularity. Differential scanning calorimetry thermograms indicated that the formed polymers consisted of crystalline, quasiordered, and disordered phases, which is a common feature of highly regioregular polymers. We prepared conductive fabrics with specific resistance of 30 and 100 Ω/sq by impregnating polyamide fabrics in a chloroform solution of P3DDT and P3DT, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2131–2135, 2004  相似文献   

9.
A new methacrylic monomer, 4‐(2‐thiazolylazo)phenylmethacrylate (TPMA) was synthesized. Copolymerization of the monomer with methyl methacrylate (MMA) was carried out by free radical polymerization in THF solution at 70 ± 0.5°C, using azobisisobutyronitrile (AIBN) as an initiator. The monomer TPMA and the copolymer poly(TPMA‐co‐MMA) were characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), and elemental analysis methods. The polydispersity index of the copolymer was determined using gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) of the copolymer performed in nitrogen revealed that the copolymer was stable to 270°C. The glass transition temperature (Tg) of the copolymer was higher than that of PMMA. The copolymer with a pendent aromatic heterocyclic group can be dissolved in common organic solvents and shows a good film‐forming ability. Both the monomer TPMA and the copolymer poly (TPMA‐co‐MMA) have bright colors: orange and yellow, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2152–2157, 2007  相似文献   

10.
Strongly adherent poly(aniline‐coo‐toluidine) coatings were synthesized on low‐carbon‐steel substrates by the electrochemical copolymerization of aniline with o‐toluidine with sodium tartrate as the supporting electrolyte. These coatings were characterized with cyclic voltammetry, ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. The formation of the copolymer with the mixture of monomers in the aqueous sodium tartrate solution was ascertained by a critical comparison of the results obtained from the polymerizations of the individual monomers, aniline and o‐toluidine. The optical absorption spectrum of the copolymer was drastically different from the spectra of the respective homopolymers, polyaniline and poly(o‐toluidine). The extent of the corrosion protection offered by poly(aniline‐coo‐toluidine) coatings to low‐carbon steel was investigated in aqueous 3% NaCl solutions by open‐circuit‐potential measurements and a potentiodynamic polarization technique. The results of the potentiodynamic polarization measurements showed that the poly(aniline‐coo‐toluidine) coatings provided more effective corrosion protection to low‐carbon steel than the respective homopolymers. The corrosion rate depended on the feed ratio of o‐toluidine used for the synthesis of the copolymer coatings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:1868–1878, 2007  相似文献   

11.
To enhance the third nonlinear optical properties of poly(thiophene methine), we synthesized a new kind of poly(3‐butylthiophene methine) with azo side groups: poly[(3‐butylthiophene‐2,5‐diyl)‐p‐(N,N‐dimethylamino)azobenzylidenequinomethane] (PBTDMABQ). PBTDMABQ and its intermediate product were characterized with IR, ultraviolet–visible, and 1H‐NMR spectroscopy. The band gaps of PBTDMABQ were calculated to be 1.94 and 2.06 eV with two different models. The thermal stability, determined by thermogravimetric analysis, indicated that PBTDMABQ decomposed above 345°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1261–1265, 2005  相似文献   

12.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

14.
A new ionic polyacetylene was prepared by the activation polymerization of 2‐ethynylpyridine with 2‐(bromomethyl)‐5‐nitrofuran in high yield without any additional initiator or catalyst. This polymerization proceeded well in a homogeneous manner to give a high yield of the polymer (92%). The activated acetylenic triple bond of N‐(5‐nitro‐2‐furanmethylene)‐2‐ethynylpyridinium bromide, formed in the first quaternerization process, was found to be susceptible to linear polymerization. This polymer was completely soluble in such polar organic solvents as dimethylformamide, dimethyl sulfoxide, and N,N‐dimethylacetamide. The inherent viscosities of the resulting polymers were in the range 0.12–0.19 dL/g, and X‐ray diffraction analysis data indicated that this polymer was mostly amorphous. The polymer structure was characterized by various instrumental methods to have a polyacetylene backbone structure with the designed substituent. The photoluminescence peak was observed at 593 nm; this corresponded to a photon energy of 2.09 eV. The polymer exhibited irreversible electrochemical behaviors between the doping and undoping peaks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The corrosion‐protection aspects of poly(o‐anisidine) (POA) coatings on mild steel in aqueous 3% NaCl solutions were investigated with electrochemical impedance spectroscopy, a potentiodynamic polarization technique, and open circuit potential measurements. The POA coatings were electrochemically synthesized on mild steel with cyclic voltammetry from an aqueous salicylate medium. The corrosion behavior of the POA coatings was investigated through immersion tests performed in aqueous 3% NaCl solutions, and the recorded electrochemical impedance spectra were fitted with an equivalent circuit to obtain the characteristic impedance parameters. The use of a single equivalent circuit was inadequate to explain the various physical and electrochemical processes occurring at different exposure times. It was suggested that some characteristic element(s) should be incorporated into the equivalent circuit at different stages of the immersion to elucidate the various processes occurring at different exposure times. The evolution of the impedance parameters with the immersion time was studied, and the results showed that POA acted as a protective coating on the mild steel against corrosion in a 3% NaCl solution. From these data, the water uptake and delamination area were determined to further support the corrosion‐protection performance of the POA coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Surface molecularly imprinted (MIP) poly[N‐(2‐hydroxypropyl) methacrylamide] [poly(HPMA)] films were prepared via interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization from 4‐cyano‐4‐(propylsulfanylthiocarbonyl) sulfanyl pentanoic acid immobilized silicon substrate using N‐(2‐hydroxypropyl) methacrylamide as the functional monomer, N,N′‐methylene(bis)acrylamide as the crosslinking agent, and ibuprofen as the template molecule. The highly crosslinked MIP layer (~12 nm) was homogeneously grafted onto the silicon surface, which favors fast mass transfer and rapid binding kinetics. Binding capacities and adsorption parameters of the MIP poly(HPMA) films were calculated from the root‐mean‐square roughness data obtained by atomic force microscopy measurements using the Luzinov and Langmuir equations adopted for this study. The target binding assays demonstrate the desirable binding capacity and imprinting efficiency of the MIP poly(HPMA) films. Meanwhile, the computational optimization and energy calculations showed the formation of the self‐assembly of monomer and template molecule via noncovalent interactions that leads to a 1:4 molecular complex between ibuprofen and N‐(2‐hydroxypropyl) methacrylamide. This study provides a versatile approach to the quantitative determination of low‐molecular‐weight biomolecules on surface‐imprinted polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45707.  相似文献   

17.
Three series of liquid‐crystalline‐cum‐photocrosslinkable polymers were synthesized from 4‐x‐phenyl‐4′‐(m‐methacryloyloxyalkyloxy)cinnamates (x = ? H, ? OCH3 and ? CN; m = 6, 8 and 10) by free radical solution polymerization using azobisisobutyronitrile as an initiator in tetrahydrofuran at 60 °C. All the monomers and polymers were characterized using intrinsic viscosity, and FTIR, 1H NMR and 13C NMR spectroscopy. The liquid crystalline behavior of these polymers was examined using a hot stage optical polarizing microscope. All the polymers exhibited liquid crystalline behavior. The hexamethylene spacer‐containing polymers exhibited grainy textures; in contrast, the octamethylene and decamethylene spacer‐containing polymers showed nematic textures. Differential scanning calorimetry data confirmed the liquid crystalline property of the polymers. Thermogravimetric analysis revealed that all the polymers were stable between 236 and 344 °C in nitrogen atmosphere and underwent degradation thereafter. As the methylene chain length increases in the polymer side‐chain, the thermal stability and char yield of the polymers decrease. The photocrosslinking property of the polymers was investigated using the technique of exposing the polymer solution to UV light and using UV spectroscopy. The crosslinking reaction proceeds via 2π–2π cycloaddition reactions of the ? CH?CH? of the pendant cinnamate ester. The polymers containing electron‐releasing substituents (? OCH3) showed faster crosslinking than the unsubstituted polymers and those containing electron‐withdrawing substituents (? CN). Copyright © 2007 Society of Chemical Industry  相似文献   

18.
Aligned thin films of the liquid‐crystalline polymer poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐bithiophene] were prepared, and the correlation between the optical anisotropy and the structural properties was shown. A series of samples with different thicknesses were prepared via a spin‐casting process on rubbed polyimide surfaces. The alignment of the polymer chains was obtained by a temperature treatment just below the clearing temperature. The degree of alignment was investigated with ultraviolet–visible absorption spectroscopy and in‐plane X‐ray diffraction. Independently, each technique revealed Hermans orientation functions in the range of 0.75–0.8. Surprisingly, a layer‐thickness dependence was not observed. In addition, the X‐ray diffraction pole figure technique revealed that the polymer chains were uniaxially aligned along the rubbing direction. The aligned films were in the nematic state, with the director elongated along the rubbing direction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
A family of new polymers based on poly(4‐(1‐hydroxyalkyl)styrene), and its copolymers with styrene were synthesized and thoroughly characterized by 1H‐NMR, 13C‐NMR, FTIR, and UV spectroscopies. The chemical modification reactions of polystyrene (PS) was used as a novel method of performing the synthesis of poly(4‐(1‐hydroxyethyl‐co‐styrene)), poly(4‐(1‐hydroxypropyl‐co‐styrene)), poly(4‐(1‐hydroxybutyl‐co‐styrene)), and poly(4‐(1‐hydroxyphenylmethyl‐co‐styrene)). The novelty of this method lies in the incorporation of the desired mol % of the functional groups in polystyrene chain, to obtain random copolymers of desired composition. In preliminary testing/evaluation studies the utility and versatility of the new copolymers, which have the potential to be negative‐tone photoresist materials, were studied. Thus a few photoresist formulations based on poly(styrene‐co‐4‐(1‐hydroxyalkylstyrene)) were developed with 5 wt % of a photoacid generator. These studies suggested that the new copolymers synthesized by a simple and alternate method could have the same potential as a photoresist material when compared with the polymers synthesized by the polymerization of the corresponding functional monomer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1902–1914, 2004  相似文献   

20.
In this work, 2‐(3‐p‐bromophenyl‐3‐methylcyclobutyl)‐2‐hydroxyethylmethacrylate (BPHEMA) [monomer] was synthesized by the addition of methacrylic acid to 1‐epoxyethyl‐3‐bromophenyl‐3‐methyl cyclobutane. The monomer and poly(BPHEMA) were characterized by FT‐IR and [1H] and [13C]NMR. Average molecular weight, glass transition temperature, solubility parameter, and density of the polymer were also determined. Thermal degradation of poly[BPHEMA] was studied by thermogravimetry (TG), FT‐IR. Programmed heating was carried out at 10 °C min−1 from room temperature to 500 °C. The partially degraded polymer was examined by FT‐IR spectroscopy. The degradation products were identified by using FT‐IR, [1H] and [13C]NMR and GC‐MS techniques. Depolymerization is the main reaction in thermal degradation of the polymer up to about 300 °C. Percentage of the monomer in CRF (Cold Ring Fraction) was estimated at 33% in the peak area of the GC curve. Intramolecular cyclization and cyclic anhydride type structures were observed at temperatures above 300 °C. The liquid products of the degradation, formation of anhydride ring structures and mechanism of degradation are discussed. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号