首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Poly(8‐hydroxy‐4‐azoquinolinephenol‐formaldehyde) resin (8H4AQPF) was prepared by condensing 8‐hydroxy 4‐azoquinoline phenol with formaldehyde (1 : 1 mol ratio) in the presence of oxalic acid. Polychelates were obtained when the DMF solution of poly(8H4AQPF) containing a few drops of ammonia was treated with the aqueous solution of Cu(II) and Ni(II) ions. The polymeric resin and polymer–metal complexes were characterized with elemental analysis and spectral studies. The elemental analysis of the polymer–metal complexes suggested that the metal‐to‐ligand ratio was 1 : 2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polymer–metal complexes of the Cu(II) complexes were square planar and those of the Ni(II) complexes were octahedral. X‐ray diffraction studies revealed that the polymer metal complexes were crystalline. The thermal properties of the polymer and polymer–metal complexes were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1506–1510, 2006  相似文献   

2.
The polymeric metal complexes of poly (3‐hydroxy‐4‐((Z)‐1‐(phenylimino)ethyl)phenyl‐3‐methylbut‐2‐enoate) designated as [poly(3H4‐1PEPMB)] and poly (3‐hydroxy‐4‐((Z)‐phenyl(phenylimino)methyl)phenyl‐3‐methylbut‐2‐enoate designated as [poly(3H4‐PPMPMB)] containing Cu(II), Ni(II), Co(II), Cd(II), Mn(II), Ca(II), and Zn(II) ions were synthesized. The ploymer ligands and metal complexes were charcterized by Fourier transform infrared, nuclear magnetic resonance (NMR), thermogravimetric analysis, differential scanning calorimeter (DSC), and X‐ray diffraction (XRD) techniques. The XRD study of the complexes revealed highly crystalline nature of polychelates. The polymeric complexes were active for the oxidation of aldehyde group. The oxidation activity of Cu (II) complex of poly (3H4‐1PEPMB) was studied for the oxidation of benzaldehyde and its derivaties to corresponding carboxylic acids. The oxidation products were confirmed by GC‐MS analysis. The oxidation of aldehydes was quantitative with 100% selectivity for benzioc acid. Thermal analysis of complexes indicated reasonably good thermal stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
8‐Hydroxy‐4‐azoquinolinephenylmethacrylate (8H4AQPMA) was prepared and polymerized in ethyl methyl ketone (EMK) at 65°C using benzoyl peroxide as free radical initiator. Poly(8‐hydroxy‐4‐azoquinolinephenylmethacrylate) poly(8H4AQPMA) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) complexes of poly(8H4AQPMA) were prepared. Elemental analysis of polychelates suggests that the metal‐ligand ratio is about 1 : 2. The polychelates were further characterized by infrared spectra, X‐ray diffraction, spectral studies, and magnetic moments. Thermal analyses of the polymer and polychelates were carried out in air. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1516–1522, 2006  相似文献   

4.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

5.
The crosslinked poly[N‐(3‐dimethylamino)propylmethacrylamide] [P(NDAPA)] and poly[N‐(3‐dimethylamino)propylmethacrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] were synthesized by radical polymerization. The resins were completely insoluble in water. The metal‐ion‐uptake properties were studied by a batch equilibrium procedure for the following metal ions: silver(I), copper(II), cadmium(II), zinc(II), lead(II), mercury(II), chromium(III), and aluminum(III). The P(NDAPA‐co‐AA) resin showed a lower metal‐ion affinity than P(NDAPA), except for Hg(II), which was retained at 71% at pH 2. At pH 5, the resin showed a higher affinity for Pb(II) (80%) and Cu(II) (60%), but its affinity was very low for Zn(II) and Cr(III). The polymer ligand–metal‐ion equilibrium was achieved during the first 20 min. By changing the pH, we found it possible to remove between 60 and 70% of Cd(II) and Zn(II) ions with (1M, 4M) HClO4 and (1M, 4M) HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5232–5239, 2006  相似文献   

6.
A chelating polymer, poly(2,4‐dihydroxy benzophenone hydrazone–formaldehyde) [poly(DHBPH–F)], was synthesized by the polycondensation of 2,4‐dihydroxy benzophenone hydrazone with formaldehyde in the presence of oxalic acid as a catalyst. Poly(DHBPH–F) was characterized by Fourier transform infrared and 1H‐NMR spectral data. The molecular weight of the polymer was determined by gel permeation chromatography. Polychelates were obtained when the dimethylformamide solution of the polymer containing a few drops of ammonia was treated with an aqueous solution of metal ions. Elemental analysis of the polychelates indicated that the metal–ligand ratio was 1 : 2. The IR spectra of the polymer–metal complexes suggested that the metals were coordinated through the oxygen of the phenolic? OH group and the nitrogen of the azomethine group. The electron paramagnetic resonance and magnetic moment data indicated a square planar configuration for Cu(II) chelate and an octahedral structure for Ni(II) chelate. The thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction data indicated that the incorporation of the metal ions significantly enhanced the degree of crystallinity. The polymerization initiation, electrical conductivity, and catalytic activity of the polychelates are discussed. Heavy‐metal ions [viz., Cu(II) and Ni(II)] were removed with this formaldehyde resin, and the metal‐ion uptake efficiency at different pH's, the nature and concentration of the electrolyte, and the reusability of the resin were also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The polymeric ligand (resin) was prepared from 2‐hydroxy‐4‐methoxybenzophenone with 1,3‐propane diol in the presence of polyphosphoric acid as a catalyst on constant heating at 160°C for 13 h. The poly[(2‐hydroxy‐4‐methoxybenzophenone) propylene] (HMBP‐PD) form 1 : 2 metal/ligand polychelates (metal–polymer complexes) with La(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), and Dy(III). The polymeric ligand and its polychelates (metal–polymer complexes) were characterized on the basis of elemental analyses, electronic spectra, magnetic susceptibilities, IR‐spectroscopy, NMR, and thermogravimetric analyses. The molecular weight was determined using number average molecular weight (Mn) by a vapor pressure osmometry (VPO) method. Activation energy ( E ) of the resin was calculated from differential scanning calorimetry (DSC). All the polychelates are paramagnetic in nature except La(III). Ion‐exchange studies at different electrolyte concentrations, pH, and rate have been carried out for lanthanides(III) metal ions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
The commercial polymers poly(ethylene imine) (PEI), poly(ethylene imine epichlorohydrin), and poly(dimethylamine‐co‐epichlorohydrin) were purified and fractionated by ultrafiltration. Their metal‐ion‐binding properties with respect to different ligand groups and the effect of the concentration on the retention properties were investigated. The amine ligands of the polymers formed the most stable complexes with the metal ions. In general, there was an effect of the pH and polymer fraction size on the retention properties. As the pH and polymer fraction size increased, the affinity to bind metal ions also increased. PEI had the highest metal‐retention values, particularly at higher pHs, at which the amine groups were nonprotonated and could coordinate easily with the metal ions. Only Pb(II) was poorly retained. The affinity for all the metal ions, except Pb(II), increased significantly at pH 5. The metal‐ion retention decreased quickly as the filtration factor increased, except for Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) ions, which were retained by over 40% at a filtration factor of 4. For other metal ions such as Pb(II), Ca(II), and Mg(II), only 10% remained bound to the polymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 222–231, 2005  相似文献   

9.
This work presents the synthesis and characterization of a new water‐soluble oligophenol derivative, 4‐(2‐hydroxybenzylideneamino)benzenesulfanilic acid (OSAL‐SA) and its metal complexes. The chemical structure of the water‐soluble polymer was characterized by nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies and thermogravimetric analyses (TGAs). Pb(II), Cu(II), Co(II) complexes of the polymer were also synthesized in methanol. Characterizations of water insoluble polymer‐metal complexes were performed by FTIR, flame atomic absorption spectroscopy, and TGA. The conductivity measurements of OSAL‐SA and polymer–metal complexes were carried out by the four‐probe technique. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

11.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

12.
2-Hydroxy-4-acryloyloxybenzophenone (2H4ABP) prepared by reacting acryloyl chloride with 2,4-dihydroxybenzophenone, was polymerized in 2-butanone at 65°C using benzoyl peroxide as initiator. Polychelates were obtained in the alkaline solution of poly(2H4ABP) with aqueous solutions of metal ions such as Ni(II), Mn(II), Co(II), Ca(II), Cd(II) and Zn(II). The polymer and polychelates were characterized by elemental analyses and spectral studies. Elemental analyses of the polychelates suggest that the metal-to-ligand ratio is 1: 2. The IR spectral data of the polychelates indicate that the metals were coordinated through the oxygen of the keto group and oxygen of the phenolic −OH group. The diffuse reflectance spectra, EPR and magnetic moments studies reveal that the polychelates of Cu(II) complex are square planar, and Ni(II), Mn(II) and Co(II) complexes are octahedral, while Ca(II), Cd(II) and Zn(II) complexes are tetrahedral. X-ray diffraction studies revealed that the polychelates are highly crystalline. The thermal and electrical properties of polymer and polymer–metal complexes are discussed. © 1998 SCI.  相似文献   

13.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

14.
The synthesis and characterization of poly(ethylenediaminetetraacetic acid‐co‐lactose) of high molar mass (132 kg mol?1) is described. The polycondensate with pendant carboxylic groups was shown to be hydrolytically and microbiologically degradable by using conventional microbiological methods. The metal complexing properties of the polyester were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II), Pb(II), and Al(III) ions in aqueous solution using the liquid‐phase polymer‐based retention (LPR) method. In addition, the complexing capacity of the Cu(II)‐saturated copolymer was determined by TGA to be 182 mg g?1 polymer. According to the retention profiles determined as a function of filtration factor by using LPR in conjunction with inductively coupled plasma spectrometry, Cr(III) and Fe(III) showed a strong interaction with this polymer under these conditions, indicated by retention values of 100% at pH 5. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2932–2939, 2007  相似文献   

15.
Amino group-terminated poly(methylene diphenylene terephthalamide) (PMDTA) was prepared using a phosphorylation technique that was then converted into Schiff's base coordination polymers by their reaction with Co(II), Ni(II), and Cu(II) complexes of salicylaldehyde [M(SAL)2] and 2-hydroxy-1-naphthaldehyde [M (NAPTHAL)2]. The resulting coordination polymers were characterized by IR, elemental analysis, magnetic susceptibility measurements, and thermogravimetric analysis (TGA). TGA shows that coordination polymers are more thermally stable than is the ligand under similar conditions. On the basis of observed results, an oxygen-and nitrogen-coordinated structure for polyar-amid-metal complexes has been proposed. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The synthesis and characterization of poly(ethylenediaminetetraacetic acid‐co‐lactose) with pendant carboxylic groups of high molar mass (132 kg mol?1) is described. The polycondensate was hydrolytically and microbiologically degradable with conventional microbiological methods. The metal‐complexing properties of the polyester were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II), Pb(II), and Al(III) ions in aqueous solution with the liquid‐phase polymer‐based retention (LPR) method. In addition, the complexing capacity of the Cu(II)‐saturated copolymer was determined by thermogravimetric analysis to be 182 mg g?1 of polymer. According to the retention profiles determined as a function of the filtration factor with LPR in conjunction with inductively coupled plasma spectrometry, Cr(III) and Fe(III) showed a strong interaction with this polymer under these conditions, as indicated by retention values of about 100% at pH 5. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 650–657, 2003  相似文献   

17.
2-Hydroxy-4-acryloyloxybenzophenone (HABP), prepared from acryloyl chloride with 2,4-dihydroxybenzophenone, was polymerized in methyl ethyl ketone at 70°C using benzoyl peroxide as initiator. Polychelates were obtained in the dimethylformamide solution of poly(HABP) containing a few drops of ammonia with the aqueous solution of Cu(II)/Ni(II) ions. The polymer and polychelates were characterized by elemental analyses and spectral studies. Elemental analyses of the polychelates suggest a metal to ligand ratio of 1:2. The IR spectral data of polychelates indicate that the metals were coordinated through the oxygen of the keto group and the oxygen of the phenolic-OH group. The diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moments of the polychelates show an octahedral and square planar structure for poly(HABP)-Ni(II) and poly(HABP)-Cu(II) complexes, respectively. X-ray diffraction studies revealed a high crystalline nature of the polychelates. The thermal properties of polymer and metal complexes and their catalytic activity are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
8‐hydroxy‐5‐azoquinolinephenylacrylate‐formaldehyde (8H5AQPA‐F) macromonomer was prepared from acryloylchloride, with condensation products of 8‐hydroxy‐5‐azoquinolinephenol‐formaldehyde, and polymerized in DMF at 70°C using benzoyl peroxide as free radical initiator. Poly(8H5AQPA‐F) was characterized by infrared and nuclear magnetic resonance spectroscopic techniques. Polychelates were obtained in alkaline solution of polymeric ligand, with the aqueous solution of Cu(II) and Ni(II). Elemental analysis of polychelates suggests that the metal to ligand ratio is about 1:2. The polymer metal complexes were also characterized by IR, XRD, magnetic moments, and thermal analysis. The effects of pH and electrolyte on the metal uptake behavior of the resin were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 797–802, 2007  相似文献   

19.
Novel ligand N‐[2‐(6‐aminopyridino)] acrylamide (APA) is prepared via amidation of 2,6‐diaminopyridine with acryloyl chloride in dry benzene as solvent. The ligand is characterized on the basis of elemental analysis, infra‐red (IR) analysis and 1H nuclear magnetic resonance. Metal–polymer complexes are reported and characterized based on elemental analysis, molar conductance, magnetic susceptibility measurements, IR, 1H nuclear magnetic resonance, electronic spectra and thermal analysis. The molar conductance of the polymer complexes in dimethylformamide corresponds to a 1:1/1:2 electrolyte, which is non‐electrolytic. IR spectra show that polyAPA is coordinated to the metal ions in a uni‐negatively bidentate manner with N, O donor sites of azomethine N and deprotonated enolic‐O. All the polymer complexes are of high spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) polymer complexes. The thermal stabilities of the polymer complexes were studied and the activation energies of the degradation were calculated. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
Poly(4‐acryloylmorpholine), poly(4‐acryloylmorpholine‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid), and poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The water‐soluble polymers obtained, containing tertiary amino, amide, and sulfonic acid groups, were investigated, in view of their metal binding properties, as polychelatogens by using the liquid‐phase polymer‐based retention technique, under different experimental conditions. The metal ions investigated were Ag(I), Cu(II), Co(II), Ni(II), Cd(II), Pb(II), Zn(II), Cr(III), and Al(III). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 180–185, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号