首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The triblock copolymers of poly(p-dioxanone)-b-poly(tetrahydrofuran)-b-poly(p-dioxanone) were synthesized by ring-opening polymerization of p-dioxanone in the presence of dihydroxyl poly(tetrahydrofuran)(PTHF) using stannous octoate (SnOct2) as a catalyst. The effects of feed ratio, reaction time and reaction temperature on the copolymerization were investigated. It was found that the optimal reaction temperature and time were 80 °C and 42 hours, respectively, and the molar ratio of p-dioxanone/SnOct2 (PDO/cat.) had little influence on the inherent viscosity of the copolymers. The triblock copolymers were characterized by various analytical techniques such as 1H-NMR and DSC.  相似文献   

2.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

3.
The in situ formation of poly(lactic acid)‐b‐poly(propylene carbonate) (PLA‐b‐PPC) block copolymers were carried out by the reaction between PLA and PPC in the presence of tetrabutyl titanate via transesterification. Molecular weight measurements and 13C nuclear magnetic resonance spectroscopy revealed that PLA‐b‐PPC block copolymers with higher molecular weight were obtained by controlling the reactivity point ratio between PLA chains and PPC chains in PLA/PPC reaction system. The sample with a composition of PLA:PPC = 40:60 (wt %) and a catalyst amount of 0.5 wt % had a more proportionable reactivity point ratio between PLA chains and PPC chains compared with other samples, resulting in a most conspicuous transesterification and inconspicuous chain scission reaction. Therefore, its high molecular weight fraction (Mw > 40.0 × 104) increased 80%. The formation of macromolecular PLA‐b‐PPC copolymer could strengthen the entanglement between PLA and PPC molecular chains, which resulted in an increased viscosity of blends at low shear rate. In addition, the elongation at break of sample with a composition of PLA:PPC = 40:60 (wt %) and a catalyst amount of 0.5 wt % was nearly as twice as which without catalyst because of the improving miscibility of PLA domains and PPC matrix by the compatibilization of PLA‐b‐PPC copolymer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46009.  相似文献   

4.
Summary Poly(isobutylene-b-ɛ-caprolactone) diblock and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers have been prepared and characterized. The synthesis involved the living cationic polymerization of IB, followed by capping with 1,1-diphenylethylene or 1,1-p-ditolylethylene and end-quenching with 1-methoxy-1-trimethylsiloxy-2-methyl-propene to yield methoxycarbonyl functional PIB. Hydroxyl end-functional PIB polymers were quantitatively obtained by the subsequent reduction of methoxycarbonyl end-functional PIB with LiAlH4. The structure of hydroxyl end-functional PIBs was confirmed by 1H NMR and IR spectroscopy. Poly(ɛ-caprolactone-b-isobutylene) diblock copolymers and poly(ɛ-caprolactone-b-isobutylene-b-ɛ-caprolactone) triblock copolymers were synthesized by the living cationic ring-opening polymerization of ɛ-caprolactone with hydroxyl end-functional PIB as macroinitiator in the presence of HCl•Et2O via the “activated monomer mechanism”. The block copolymers exhibited close to theoretical Mns and narrow molecular weight distributions. Received: 30 January 2002/Revised version: 19 February 2002/ Accepted: 19 February 2002  相似文献   

5.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A novel biodegradable copolymer was synthesized from poly(vinyl alcohol) and poly(p-dioxanone) by ring-opening polymerization. The molecular structure of the copolymer was characterized by one- and two-dimensional NMR spectroscopy. The results of differential scanning calorimetry (DSC) show that the amphiphilic and comb grafted structure of the copolymer make its crystalline behavior different from that of the poly(p-dioxanone) homopolymer (PPDO). The in vitro degradation rate of the copolymers can be controlled via adjusting the number and length of PPDO segments of PVA-g-PPDO copolymers. The copolymer has a potential application in biomedical materials or in the controlled release of drug.  相似文献   

7.
Poly(methyl methacrylate-g-(propylene oxide-b-ethylene oxide)) and poly (methyl methacrylate-g-(ethylene oxide-b-propylene oxide)), comprising chemically dissimilar sequences, exhibit intramolecular phase separation. These compositions have applications in coatings and as surface-tension modifiers. This paper presents the thermal behavior of these graft copolymers: separate samples of the homopolymer and of the grafts were also analyzed to provide comparisons. The phase behavior has been analyzed by differential scanning calorimetry and by dynamic-mechanical thermal measurements. Two glass transitions (Tg) are observed, caused by the partial incompatibility within the copolymers. The activation energy of the Tg relaxation process of the main chain is decreased by the graft chain. The influence of poly(propylene oxide-b-ethylene oxide) grafts on the thermal degradation of the poly(methyl methacrylate) (PMMA) main chain was studied by using thermogravimetric analysis. Prolysis of the graft copolymers occurs in three stages and begins on the graft chain and at a lower temperature than the pyrolysis of pure PMMA. Both the phase behavior and the thermal stability are found to depend sensitively on the composition of the copolymer. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
In this article, we describe the synthesis and solution properties of PEG‐b‐PTMC star block copolymers via ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) monomer initiated at the hydroxyl end group of the core PEG using HCl Et2O as a monomer activator. The ROP of TMC was performed to synthesize PEG‐b‐PTMC star block copolymers with one, two, four, and eight arms. The PEG‐b‐PTMC star block copolymers with same ratio of between hydrophobic PTMC and hydrophilic PEG segments were obtained in quantitative yield and exhibited monomodal GPC curves. The amphiphilic PEG‐b‐PTMC star block copolymers formed spherical micelles with a core–shell structure in an aqueous phase. The mean hydrodynamic diameters of the micelles increased from 17 to 194 nm with increasing arm number. As arm number increased, the critical micelle concentration (CMC) of the PEG‐b‐PTMC star block copolymers increased from 3.1 × 10?3 to 21.1 × 10?3 mg/mL but the partition equilibrium constant, which is an indicator of the hydrophobicity of the micelles of the PEG‐b‐PTMC star block copolymers in aqueous media, decreased from 4.44 × 104 to 1.34 × 104. In conclusion, we confirmed that the PEG‐b‐PTMC star block copolymers form micelles and, hence, may be potential hydrophobic drug delivery vehicles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
A series of copolymers of poly(2‐methacryloyloxyethyl phosphorylcholine)‐b‐poly(butylene succinate)‐b‐poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC‐b‐PBS‐b‐PMPC) were synthesized by atom transfer radical polymerization. The structure of the polymers was characterized by 1H NMR and infrared spectroscopy, and their thermal properties were described using TGA and DSC. In aqueous solutions, the PMPC‐b‐PBS‐b‐PMPC could form micelles with sizes ranging from 108 to 170 nm. In vitro release studies showed that acidic media and a longer PMPC chain benefited doxorubicin (DOX) release. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays indicated that the micelles had low cytotoxicity to HeLa and L929 cells. DOX‐loaded micelles exhibited high cytotoxicity to HeLa cells. Flow cytometry results demonstrated that DOX‐loaded micelles could be internalized by HeLa cells. The in vitro phagocytosis results showed 3.9‐fold and 5.5‐fold reductions compared with poly(lactic acid) (PLA) nanoparticles and PDS55 micelles. These results demonstrate that PMPC‐b‐PBS‐b‐PMPC block copolymer micelles have great promise for cancer therapy. © 2017 Society of Chemical Industry  相似文献   

10.
The AB type diblock PS‐b‐PEO and ABA type triblock PS‐b‐PEO‐b‐PS copolymers containing the same proportions of polystyrene (PS) and poly(ethylene oxide) (PEO) but different connection sequence were synthesized and investigated. Using the sequential living anionic polymerization and ring‐opening polymerization mechanisms, diblock PS‐b‐PEO copolymers with one hydroxyl group at the PEO end were obtained. Then, using the classic and efficient Williamson reaction (realized in a ‘click’ style), triblock PS‐b‐PEO‐b‐PS copolymers were achieved by a coupling reaction between hydroxyl groups at the PEO end of PS‐b‐PEO. The PS‐b‐PEO and PS‐b‐PEO‐b‐PS copolymers were well characterized by 1H NMR spectra and SEC measurements. The critical micelle concentration (CMC) and thermal behaviors were also investigated by steady‐state fluorescence spectra and DSC, respectively. The results showed that, because the PEO segment in triblock PS‐b‐PEO‐b‐PS was more restricted than that in diblock PS‐b‐PEO copolymer, the former PS‐b‐PEO‐b‐PS copolymer always gave higher CMC values and lower crystallization temperature (Tc), melting temperature (Tm) and degree of crystallinity (Xc) parameters. © 2015 Society of Chemical Industry  相似文献   

11.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
X.Y. Xiong  L.H. Gan 《Polymer》2005,46(6):1841-1850
Poly(lactic acid) (PLA) was successfully grafted to both ends of Pluronic F87 block copolymer (PEO-PPO-PEO) to obtain amphiphilic P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers (PLA-F87-PLA) with short PLA blocks. The block composition and structure of PLA-F87-PLA block copolymers were studied by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetric (DSC) and wide angle X-ray diffraction (WXRD) techniques. The aggregation behavior of PLA-F87-PLA block copolymers in aqueous solutions was studied using the laser light scattering (LLS) technique. Various types of particles consisting of small micelles, medium and large aggregates were observed due to the complex structure of these copolymers. Importantly, PLA-F87-PLA block copolymers retain the thermal responsive behavior found in Pluronic systems. The critical micellization temperatures (CMTs) of PLA-F87-PLA were lower than that of F87 because of increased hydrophobicity introduced by the PLA blocks. A reversible sol-gel transition was observed for the hydrogels formed from PLA6-F87-PLA6 and PLA9-F87-PLA9 block copolymers. Preliminary results from the drug release study using a hydrophilic model drug procain hydrochloride (PrHy) were promising. Constant initial release rate was observed.  相似文献   

13.
A series of novel degradable triarm poly(propylene oxide)‐block‐polylactide (PPO‐b‐PLA) copolymers was synthesized by ring‐opening polymerization of L ‐lactide (LLA) or D ,L ‐lactide (DLLA) using low unsaturated PPO triols as macromolecular initiator. The chemical structures of the resulting copolymers were characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Combination of FTIR, GPC, and NMR results confirmed the formation of PPO‐b‐PLA copolymers. One glass transition was observed by differential scanning calorimetry (DSC), suggesting good miscibility between PPO and PLA segments in the copolymers. DSC and wide‐angle X‐ray diffraction demonstrated that PPO‐b‐PLLA copolymers were semicrystalline materials, and the crystallinity increased with increasing the PLLA content. In contrast, PPO‐b‐PDLLA copolymers were totally amorphous. The PPO‐b‐PLA copolymers exhibited improved thermal stability when compared with PPO polyols according to thermogravimetric analysis. The thermal degradation behavior of the copolymers depended on the composition. Polyurethane foams were prepared by crosslinking PPO and PPO‐b‐PLA copolymers using isocyanate. Alkaline degradation of the foams was investigated in 10 wt/vol % NaOH at 80°C. The results show that the novel PPO‐b‐PLA copolymers could be promising as degradable polymeric materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Poly(butylene 2,6‐naphthalate) (PBN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two‐step melt copolymerization process of dimethyl‐2,6‐naphthalenedicarboxylate (2,6‐NDC) with 1,4‐butanediol (BD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structures, thermal properties, and hydrophilicities of these copolymers were studied by 1H NMR, DSC, TGA, and by contact angle and moisture content measurements. In particular, the intrinsic viscosities of PBN/PEG copolymers increased with increasing PEG molecular weights, but the melting temperatures (Tm), the cold crystallization temperatures (Tcc), and the heat of fusion (ΔHf) values of PBN/PEG copolymers decreased on increasing PEG contents or molecular weights. The thermal stabilities of the copolymers were unaffected by PEG content or molecular weight. Hydrophilicities as determined by contact angle and moisture content measurements were found to be significantly increased on increasing PEG contents and molecular weights. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2677–2683, 2006  相似文献   

15.
A combination of reduced graphene oxide (rGO) nanosheets grafted with regioregular poly(3‐hexylthiophene) (P3HT) (rGO‐g‐P3HT) and P3HT‐b‐polystyrene (PS) block copolymers was utilized to modify the morphology of P3HT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layers in photovoltaic devices. Efficiencies greater than 6% were acquired after a mild thermal annealing. To this end, the assembling of P3HT homopolymers and P3HT‐b‐PS block copolymers onto rGO‐g‐P3HT nanosheets was investigated, showing that the copolymers were assembled from the P3HT side onto the rGO‐g‐P3HT nanosheets. Assembling of P3HT‐b‐PS block copolymers onto the rGO‐g‐P3HT nanosheets developed the net hole and electron highways for charge transport, thereby in addition to photoluminescence quenching the charge mobility (μh and μe) values increased considerably. The best charge mobilities were acquired for the P3HT50000:PC71BM:rGO‐g‐P3HT50000:P3HT7000b‐PS1000 system (μh = 1.9 × 10?5 cm2 V–1 s–1 and μe = 0.8 × 10?4 cm2 V–1 s–1). Thermal annealing conducted at 120 °C also further increased the hole and electron mobilities to 9.8 × 10?4 and 2.7 × 10?3 cm2 V–1 s–1, respectively. The thermal annealing acted as a driving force for better assembly of the P3HT‐b‐PS copolymers onto the rGO‐g‐P3HT nanosheets. This phenomenon improved the short circuit current density, fill factor, open circuit voltage and power conversion efficiency parameters from 11.13 mA cm?2, 0.63 V, 62% and 4.35% to 12.98 mA cm?2, 0.69 V, 68% and 6.09%, respectively. © 2019 Society of Chemical Industry  相似文献   

16.
In poly(p-phenylene terephthalamide-co-ethylene terephthalate) the rigid segments of p-phenylene terephthalamide are aggregated as crystalline domains above the weight fraction of the rigid segments, 6 wt%. The rigid segments disturb the crystallization of the flexible segments of poly(ethylene terephthalate) (PET) and are preferentially contained in the amorphous phase of the PET segments. The crystallinity of the PET segments decreased with increasing the content of the rigid segments in the copolymers and the glass transition temperature is decreased by the decrease of the crystallinity below the weight fraction of the rigid segments, 6 wt%, in spite of the depression of micro-Brownian motion of the PET segments due to the rigid segments. The values of Young's modulus E, yield stress σy and breaking stress σb for the zone-drawn copolymer were conspicuously increased by the rigid segments contained in it, in comparison with those of the zone-drawn PET homopolymer. Such higher values of E, σy, and σb of the copolymer are originated by greater increases in the orientation of amorphous chains in the copolymer. The rigid segments in the amorphous phase effectively depressed the thermal shrinkage of the zone-drawn and the zone-annealed copolymers.  相似文献   

17.
The chemical redox system of ceric ammonium nitrate(Ce4+) and poly(dimethylsiloxane)s (PDMS) with monohydroxy (MH), dihydroxy (DH), and diamine(DA) chain ends was used to polymerize acrylonitrile (AN) to produce monohydroxy poly(dimethylsiloxane)s‐b‐polyacrylonitrile (MH.PDMS‐b‐PAN), dihydroxy poly(dimethylsiloxane)s‐b‐polyacrylonitrile (DH.PDMS‐b‐PAN), and α, ω‐diamine poly(dimethylsiloxane)s‐b‐polyacrylonitrile (DA.PDMS‐b‐PAN) block copolymers. The concentration, reaction time, and the type of poly(dimethylsiloxane) affect the yield and the molecular weight of the copolymers. The ratio of AN/ceric salt/PDMS has remarkably affects the properties of formed copolymers. DH.PDMS‐b‐PAN copolymers were also prepared by electroinduced polymerization in the presence of catalytic amount of Ce4+ in a divided electrochemical cell where Ce3+ is readily oxidized into Ce4+ at the anode. The products were characterized by Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, DSC, and their surface properties were investigated through contact‐angle measurements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
In this study, the graft copolymerization of N-hydroxymethylacrylamide (NHMAAm) with poly(vinyl alcohol) (PVA) was carried out by using potassium persulfate/N,N,N,N-tetramethylethylenediamine (K2S2O8) to improve physicochemical properties and functionality of PVA. The structures of PVA-g-poly-NHMAAm (PNHMAAm) copolymers were characterized by Fourier transform infrared, elemental analysis, nuclear magnetic resonance (1H-NMR), 13C-NMR, and size exclusion chromatography. Their thermal behaviors were investigated by differential scanning calorimetry and thermogravimetric analysis (TGA). The TGA results indicated that the graft copolymers show better thermal stability then PVA. The effects of reaction time, temperature, NHMAAm, and K2S2O8 concentrations on grafting parameters were examined. The maximum grafting yield (34.01%) was provided when reaction was carried out under optimum conditions (time = 2 hr, T = 40°C, [NHMAAm] = 0.25 M, [K2S2O8] = 4.56 × 10−3 M). Moreover, PVA-g-PNHMAAm membranes were prepared and their swelling behaviors were studied. The results demonstrated that swelling degree of graft membranes increased almost 3.5-fold compared to PVA membrane.  相似文献   

19.
The compatibility of poly(p-dioxanone) (PPDO) and poly(lactic acid) (PLA) is very important when they are blended. Herein, three kinds of snowman-like Janus particles (JPs) with different hydrophilic–lipophilic balance (HLB) were prepared by one-pot method by adjusting the surficial functional groups of polystyrene (PS) side and used as the compatibilizer of PPDO/PLA composites. JPs self-assemble at the cell-structure PPDO/PLA interface, which provides channels for the migration of PPDO. The silica (SiO2) side forms hydrogen bond with PLA, and the PS side forms hydrophobic action with PPDO. Therefore, JPs improve interfacial adhesion and suppress phase separation. Among the three JPs, silica@polystyrene-graft-polymethylmethacrylate (SiO2@PS-PMMA) possesses the most excellent interfacial behavior because its HLB value is similar to that of PPDO/PLA composites. Tensile strength was increased from the original 14.59 MPa to the maximum 24.18 MPa at 1.5 phr of SiO2@PS-PMMA JPs, and the elongation at break increased from 39% to 203%.  相似文献   

20.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号