首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对无线电能传输(WPT)系统效率低的问题,提出了一种基于E类双管逆变器和FPGA频率跟踪控制的磁耦合谐振式WPT(MCR-WPT)系统。设计了双E类高频逆变电路,推导出带有E类逆变MCR-WPT系统传输效率的表达式。利用Multisim进行了电路仿真和分析,研究了线圈位置和半径对耦合系数的影响,得出了耦合系数、传输距离和有无频率跟踪对传输效率的影响曲线。研制了小功率WPT装置,在传输距离为8 cm左右时,获得最大传输功率为98,效率为84%。实验结果证明了理论分析的正确性。  相似文献   

2.
磁耦合感应式无线电能传输(MCI-WPT)感应区域传输效率高,而磁耦合谐振式无线电能传输(MCR-WPT)谐振区域传输效率高,为解决两者优势不可兼得的问题,提出磁耦合双模无线电能传输(MCB-WPT),引入转换开关组,实现磁耦合无线电能传输系统拓扑结构可控,使其可工作在MCI-WPT和MCR-WPT双模式下,在一定范围内,实现最佳能量传输。建模分析MCI-WPT与MCR-WPT传输效率与传输距离的关系;提出MCB-WPT方案,建立其传输效率模型,并给出MCB-WPT系统设计方法和控制策略。实验证明,MCB-WPT在感应区域和谐振区域均可获得较高传输效率。  相似文献   

3.
针对MCR-WPT系统的传输效率受距离约束程度高等问题,本文分析讨论了磁负超材料介质板对MCR-WPT系统传输效率的影响,推导并验证了磁负超材料介质板对消逝波传输的增强作用。利用HFSS构造了一种工作在ISM频段的MCR-WPT系统,并设计了一种适合该MCR-WPT系统的低频平面螺旋型磁负超材料介质板。当系统工作频率大于25MHz时,该低频磁负超材料介质板表现出磁负特性。通过将所设计的不同周期排列的磁负超材料介质板放置在MCR-WPT系统的不同位置,研究了不同条件下螺旋型磁负超材料介质板对系统传输效率影响。仿真和实验结果表明:在MCR-WPT系统发射端插入小尺寸磁负超材料介质板、接收端插入中等尺寸磁负超材料介质板时,系统传输效率能够得到有效提高;在传输距离不变的前提下,加入磁负超材料介质板后MCR-WPT系统的传输效率至少提高20%,其中实验平台中系统传输效率提高了近30%。  相似文献   

4.
基于E类放大器的中距离无线能量传输系统   总被引:1,自引:0,他引:1  
采用E类放大器设计大功率中距离无线能量传输系统,具有成本低、调试简单、高效等优点。针对大功率E类放大器导通角、LC滤波电路参数和阻抗匹配电路等设计问题进行详细分析,提出大功率E类放大器设计方法。建立四线圈两两耦合磁谐振无线能量传输系统等效电路模型,提出无线能量传输环节等效输入阻抗的计算方法。最后,以开关管损耗最低为目标,器件耐压、输入电压等限制条件为约束,设计并成功搭建无线能量传输系统,传输功率3kW,传输距离22cm,系统效率85%,对无线能量传输系统中大功率E类放大器设计方法进行验证。  相似文献   

5.
ZVS型E类逆变器被认为是工作效率最高的功率放大器,被广泛用作磁耦合谐振式无线电能传输(MCR-WPT)系统的驱动电源,此系统的效率不仅仅在于电能依托线圈载体无线传输的效率,还在于逆变电源的工作效率。本文通过对ZVS型E类逆变器建模分析,得出其额定最佳工作状态下的输出功率与设计参数、负载间的关系;采用电路互感理论构建E类逆变器驱动的四线圈结构MCR-WPT系统的等效模型,并以驱动电源的额定最佳工作状态为优化目标进行负载匹配,给出电源适应于负载的高效率MCR-WPT系统设计方法。最后通过实验证明了这种方法能够实现发射端逆变电源与接收端负载的高度匹配,系统的输出功率得以显著提升。  相似文献   

6.
温艳  邵毅 《电源学报》2014,12(3):110-114
磁耦合谐振无线电能传输(MCR-WPT)系统功率传输效率随传输距离变化而迅速下降。为此,根据四线圈MCR-WPT系统电感耦合模型,推导出传输效率的数学计算式,以此提出利用不同半径的谐振器耦合线圈来匹配不同传输距离,并利用微控制器自动切换对应的谐振器耦合线圈。为验证设计方法的有效性进行仿真和实验分析,结果表明,这种方法可以使系统能量传输效率在较宽的距离区间内维持高效的水平。  相似文献   

7.
磁耦合谐振无线电能传输(MCR-WPT)具有传递功率较大、距离适中、传递效率高等优点。针对MCR-WPT中频率资源划分尚未统一的问题,基于两线圈串联-串联(SS)模型的WPT系统,用电路模型分析WPT系统的运行特性,提出了WPT谐振频率范围划分的距离原则。使不同传递距离范围对应不同谐振频率序列,并结合改进几何均值原则对划分结果进行修正,得到修正后的谐振频率序列推荐值。同时,为增强WPT对负载变化的适应性,将谐振频率点拓展为工作频段,提出基于负载特性的工作频段确定方法。再将谐振频率序列和工作频段结合,实现了基于SS型MCR-WPT系统的频带序列划分。最后搭建实验平台验证频带序列划分结果的合理性。  相似文献   

8.
双E类放大器作为大功率无线充电系统的高频激励源具有更加安全、稳定的性能。首先通过电荷量比较的方法计算得出,在相同电压应力条件下,双E类放大器的输出功率相对于单E类放大器提高到4倍。然后使用相同的方法分别对单E类放大器与双E类放大器进行参数设计和实验数据对比。最后用双E类放大器作为高频激励源,结合串-并联谐振式线圈传输结构,以及电压匹配电路构成完整的无线充电系统,输出给48 V蓄电池充电。在传输距离为6cm的条件下,可达到2 A的充电电流,传输效率为68%。在大功率输入条件下,高频激励源的电压应力较低,实验结果验证了双E类放大器应用在无线电能传输的优越性。  相似文献   

9.
李甜  肖文勋  张波  黄雅琪 《电源学报》2017,15(3):100-106
E类逆变器用作磁耦合谐振式无线输电MCR-WPT系统的激励源时,其等效负载由线圈参数和系统负载决定,由此导致E类逆变器的优化设计较为困难。为此,研究了两螺线管线圈间的互感算法,分析了互感随线圈间距变化的特性,并探讨了MCR-WPT系统两螺线管线圈的传输效率、输出功率及E类逆变器的等效负载与线圈间距的解析关系,给出E类逆变器实现零电压开关ZVS(zero voltage switch)的参数设计方法,仿真验证了互感算法和系统参数设计方法的精确性。实验结果表明,当线圈间距为26 cm时可实现ZVS,且系统效率达到86.3%,验证了理论和仿真分析的有效性和准确性。  相似文献   

10.
磁耦合谐振式无线电能传输是一种中距离无线电能传输技术,传输距离和传输效率是该技术取得突破的瓶颈。本文通过电路模型分析了传输特性,并基于E类功放设计了一套无线电能传输装置,通过对E类功放开关过程的分析,确定E类放大器在电能传输过程产生损耗的主要原因。设计了脉冲检测式频率控制电路,通过检测MOSFET输出端电压,判断系统工作状态,调节驱动信号频率,使E类功放在负载变化的情况下能迅速做出调整,大大提高了系统的工作效率和传输功率。  相似文献   

11.
以提高磁耦合谐振式无线电能传输(MCR-WPT)系统传输效率为主要目标,同时保证系统不发生频率分裂,对系统多个参数进行优化.利用互感模型分析影响MCR-WPT系统传输效率的因素,确定优化参数.从系统输入阻抗的角度分析系统产生频率分裂现象的原因及抑制方法.利用粒子群优化(PsO)算法对影响系统传输效率的因素进行优化,在抑制系统发生频率分裂的同时使系统传输效率达到最大,得到最优解对应的参数值.通过实验证明该方法有效提高了MCR-WPT系统传输效率,对MCR-WPT系统的参数确定具有一定参考意义.  相似文献   

12.
针对磁耦合谐振式无线电能传输(magnetically coupled resonant wireless power transfer, MCR-WPT)系统接收线圈相对于发射线圈偏移角度的不确定性,导致系统传输效率波动较大的问题,提出了一种基于反射阻抗的MCR-WPT系统接收线圈偏移角度计算方法。根据基尔霍夫电压定律建立发射线圈反射阻抗与线圈互感之间的关联,再根据空间两线圈的互感公式推导互感与线圈偏移角度之间的关系式,从而建立反射阻抗与偏移角度的表达式。利用Maxwell和Simplorer仿真软件搭建线圈模型和外围电路进行联合仿真,同时搭建了完整的MCR-WPT系统实验装置,在两线圈距离不同的情况下做了多组实验。仿真结果显示两线圈设定角度与计算角度平均绝对误差为2.57°,实验结果显示设定角度与计算角度平均绝对误差为2.94°。通过上述方法可以较为精确地计算出短距离无线电能传输系统接收线圈的偏移角度。  相似文献   

13.
在远距离无线电能传输系统中,两线圈的耦合系数很低。为了提高系统的输出功率,一般需要提高谐振频率,这就要求发射侧的逆变电路拓扑要适应较高的工作频率。E类放大器的拓扑简单,工作频率达MHz级别,且工作在软开关状态下,适合作为无线电能传输系统的高频激励源。由于实际应用中,各种寄生参数对E类放大器的调试会造成一些影响。本文基于E类放大器的基本工作原理,利用simplorer仿真并联电容大小对E类放大器的作用,为后期实验调试提供一定的指导方向。并且通过Maxwell和simplorer的联合仿真研制了一套无线电能传输系统,能够实现在两线圈距离50cm,功率大于10W的能量传输。并且运行状况良好。  相似文献   

14.
针对磁耦合谐振式无线电能传输(MCR-WPT)系统负载与互感识别精度低、速度慢等问题,提出一种基于TensorFlow神经网络的双LCC型MCR-WPT系统负载与互感识别方法.该方法基于TensorFlow深度学习框架,采用神经网络模型,将MCR-WPT系统的负载与互感识别问题等效为非线性方程的求解问题,进而转化为深度学习非线性拟合问题,并给出模型的训练方法,最后得到基于TensorFlow神经网络的MCR-WPT系统负载与互感识别模型.通过离线方式训练负载与互感识别模型,并将训练完成的识别模型导入微型控制器,只需要采集系统输入电流值和传输距离就能够实现负载与互感在线同时识别,识别速度快、精度高,有利于系统的实时控制,且成本较低、易于实现,有利于工程推广应用.  相似文献   

15.
陈旭玲  许欣慰  刘成  田婷  董硕 《电源学报》2023,21(6):129-135
目前,磁耦合谐振式无线电能传输MCR-WPT(magnetic coupling resonance-wireless power transmission)的研究主要集中在单发射多负载静止和单发射单负载转动2种形式。通过对单发射低速转动多负载状态下的系统进行研究,建立单发射多负载系统并进行理论分析,使用COMSOL对静止状态下多负载接收线圈进行仿真,设置静止状态与旋转状态作对比实验,分析接收端转动对MCR-WPT系统传输效率的影响,探讨低速旋转状态下系统传输效率的变化规律。结果表明,在低速转动三负载时,系统能够保持稳定的功率输出,单个负载的传输效率可以达到23.260%,总传输效率达到69.768%,低速转动对传输效率影响较小。  相似文献   

16.
针对大功率磁耦合谐振式无线电能传输(MCR-WPT)系统谐振线圈耦合系数较小的特点,首先采用电路理论对系统进行建模分析,然后通过公式的推导与分析提出一套线圈优化设计方案,并基于有限元仿真方法得出一组最优线圈参数,最后搭建了一套1 kW,20 kHz大功率MCR-WPT系统实验平台对所提方案进行了仿真与实验验证,实验结果表明系统传输效率高达91.5%,满足设计要求。  相似文献   

17.
为了进一步揭示磁耦合谐振式无线电能传输(MCR-WPT)系统频率分裂现象的物理原理,并建立一套使得系统工作在最大传输功率状态的工作准则,提出了一套建模分析方法。首先根据基尔霍夫电压定律对MCR-WPT系统进行了时域建模,并通过矩阵计算得到了传输功率的解析表达式。然后基于振动理论,分析了传输功率的频率分裂现象,阐述并推导了系统的几个关键参数:系统固有频率、电路固有频率和共振频率。接着深入分析了系统固有频率和电路固有频率之间的关系,进一步揭示了频率分裂及系统共振的物理原理。最后,通过实验验证了该理论的有效性和正确性。  相似文献   

18.
功率放大器作为无接触电能传输系统的功率输入源,是该传输系统的关键构成部件。为了提高整个无接触电能传输系统的效率,适应不同传能线圈结构,以及保证线圈距离变化下稳定的运行,本文设计了一款高效的E类功率放大器。设计中采用矩量法(MOM)来获取功率放大器版图的S参数,对功放进行电磁分析,同时,考虑了设计中的电磁兼容问题并制作了一款屏蔽盒。论文给出了E类功率放大器的设计步骤和ADS软件仿真结果,并进行了实物制作。实测结果显示,设计的功率放大器能够输出的最大功率附加效率为93%,同时输出功率增益和功率分别达19.9dB和43.9dBm。考虑不同谐振频率的线圈结构时,能够获得19dB的功率增益和89%以上的功率附加效率;对于不同内阻和不同线圈距离的线圈结构,测试结果也有60%以上的功率附加效率。实验结果证实了设计的正确性和可行性。  相似文献   

19.
探讨了带中继谐振器的磁耦合谐振式无线电能传输MCR-WPT(magnetic coupling resonant-wireless power transfer)系统的传输效率优化问题。通过构建和分析带中继线圈的等效电路模型,引入功率传输性能参数|Sij|2推导出当中继线圈和接收线圈位置固定时,发射线圈和带中继谐振器之间的最佳耦合系数的闭合形式解,进而确定发射线圈和带中继谐振器之间的最优距离,实现总系统传输效率最大化。通过线圈设计及相关实验,验证了分析结果与实验结果的一致性。研究结果表明,MCR-WPT系统可方便配置最佳耦合系数以实现电能传输效率最大化,为带中继谐振器的WPT系统效率优化提供重要参考。  相似文献   

20.
逄海萍  邱毅  陈浩然 《电源学报》2021,19(2):153-159
磁耦合谐振式无线电能传输MCR-WPT(magnetically-coupled resonant wireless power transfer)因其具有在中长距离传输较大电能的优势,获得较高的潜在应用价值.针对一类具有串-串结构等效电路的MCR-WPT系统,首先分析其传输效率,得出发射和接收回路同时处于相同频率的谐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号