首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章详细分析了方程σ=kε~m的优缺点及适用范围,提出了超塑性的定义并引入了极限超塑性和有效应变速率敏感性指数的概念。在此基础上,讨论了流动应力不同部分—内应力及有效应力对超塑性变形的作用,据此导出一个超塑性流动应力与应变速率之间的关系式。该关系式能深入地说明有关的超塑性行为,理论结果与实验数据一致。  相似文献   

2.
自 Backofen 等人提出应变速率敏感性指数 m 值,并在实验的基础上建立起似粘性的超塑性本构方程以来,已历时近二十年了。由于不论是似粘性本构方程σ=kε~m 还是粘塑性本构方程σ=kε~n■~m,都把 m 视为常数。所以其适合的应变速率变化范围很窄,用予描述超塑性变形规律与实际偏差很大,也难以说明变形过程中的一些关键问题。因此,本文拟用余弦函数和负幂函数模拟 m—log■曲线,通过求解 m 值定义的微分方程和力学状态的微分方程,建立一套变 m 值的本构方程。对所得方程进行理论分析及实验比较。判明二者比似粘性方程和粘塑性方程的近似程度都高,而且用余弦函数模拟比用负幂函数模拟的近似程度更高。但是用负幂函数模拟所得的本构方程可直接写成用σ表达■的解析式,这对处理某些实际问题是必要的。此外,对变m值本构方程的实验建立等有关问题也予以讨论。  相似文献   

3.
超塑性m-δ关系曲线可以分为m_L=m_(max)和m_L=m_(min)两大类型。均可由下面的C.L.(刘勤)m-σ方程表示:σ(%)=〔cε~(m-m_0)-1〕×100当σ=σ_0=0时,m=m_0≠0,C=C_0=κ_0/κ_0=1。当σ=σ_1(σ_(11),σ_(12),σ_(13),…,)时,m=m_1(m_(11),m_(12),m_(13),…),C=C_1(C_(11),C_(12),C_(13),…)=κ_1(κ_(11),κ_(12),κ_(13),…)/κ_0,当σ=σ_F时,m=m_F,C=C_F=κ_F/κ_0。对C 值进行“规划”,得到的C_1~(σ_O-σ_L)-(m_L=m_(max)),C_2~(σ_F-σ_L)-(m_L=m_(min)),C_3~(m_0-m_L)-(m_L=m_(max)和C_4~(m_F-m_L)-(m_L=m_(min))四种类型的“规划”方程分别对m_L=m_(max)和m_L=m_(min)型m-σ曲线适用。若m-σ曲线属简单的下降式,C 及其“规划”值均可近似地取1。否则,C-σ关系是应加以研究的问题。m 和k 值对σ值的效应可以分为动态(直接)和静态(间接)两种。最后的σ值是两种效应的综合结果。(注:m 和κ值见基本方程σ=κε~m)  相似文献   

4.
超塑性 m-δ关系曲线可以分为 m_L=m_(max)和 m_L=m_(min)两大类型。均可由下面的 C.L.(刘勤)m-σ方程表示:σ(%)=〔cε~(m-m_0)-1〕×100当σ=σ_0=0时,m=m_0≠0,C=C_0=κ_0/κ_0=1。当σ=σ_1(σ_(11),σ_(12),σ_(13),…,)时,m=m_1(m_(11),m_(12),m_(13),…),C=C_1(C_(11),C_(12),C_(13),…)=κ_1(κ_(11),κ_(12),κ_(13),…)/κ_0,当σ=σ_F时,m=m_F,C=C_F=κ_F/κ_0。对 C 值进行“规划”,得到的 C_1~(σ_O-σ_L)-(m_L=m_(max)),C_2~(σ_F-σ_L)-(m_L=m_(min)),C_3~(m_0-m_L)-(m_L=m_(max)和 C_4~(m_F-m_L)-(m_L=m_(min))四种类型的“规划”方程分别对 m_L=m_(max)和 m_L=m_(min)型 m-σ曲线适用。若 m-σ曲线属简单的下降式,C 及其“规划”值均可近似地取1。否则,C-σ关系是应加以研究的问题。m 和 k 值对σ值的效应可以分为动态(直接)和静态(间接)两种。最后的σ值是两种效应的综合结果。(注:m 和 κ 值见基本方程σ=κε~m)  相似文献   

5.
利用Gleeble-1500D热模拟试验机,在温度为1050~1250℃、应变速率为0.001~0.1s-1、真应变量0.16的条件下,研究和分析SA508Gr.4N钢高温塑性变形及动态再结晶行为。结果表明:SA508Gr.4N钢的高温真应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;在真应力-应变曲线的基础上,建立材料热变形本构方程,较好地表征了材料高温流变特征,其热激活能为383.862kJ/mol;其硬化率-应力(θ-σ)曲线均呈现拐点且-dθ/dσ-σ曲线出现极小值;临界应变随应变速率的增大与变形温度的降低而增加,且临界应变(εc)与峰值应变(εp)之间具有一定相关性,即εc/εp=0.517;临界应变与Z参数之间的函数关系为εc=8.57×10-4 Z0.148。  相似文献   

6.
本文以实验事实证明宏观的σ-ε曲线的非唯一性。由于材料成分、体积、试样历史及处理条件以及试样试验温度、压力和环境等的不同,宏观本构方程中变量ε的系数K 和幂指数n 一定是不同的。只有上述热力学参数与外加应力σ同时被确定,才会有宏观应力σ与宏观应变ε之间一一对应的确定关系。但实验发现:不同热历史条件下宏观应力σ与微观应变ε_(mic)或位错亚结构分布组态之间总是存在一一对应的确定关系。  相似文献   

7.
本文以实验事实证明宏观的σ-ε曲线的非唯一性。由于材料成分、体积、试样历史及处理条件以及试样试验温度、压力和环境等的不同,宏观本构方程中变量ε的系数 K 和幂指数 n 一定是不同的。只有上述热力学参数与外加应力σ同时被确定,才会有宏观应力σ与宏观应变ε之间一一对应的确定关系。但实验发现:不同热历史条件下宏观应力σ与微观应变ε_(mic)或位错亚结构分布组态之间总是存在一一对应的确定关系。  相似文献   

8.
国标和航标关于室温和高温拉伸试验方法以及现代设计,都要求能自动绘制P—Δ1曲线或σ—ε曲线,从曲线上求出E、σ_(0.01)、σ_(0.2)、σ_(0.7)、σ_(0.85)、σ_b、δ和n值等参数,试验机的吨位能随所试材料及试件大小任意选择,提高测试精度。拉伸速度以所试材料屈服点σ_(0.2)为界,高温拉伸屈服点σ_(0.2)前应变速率为0.005  相似文献   

9.
Zn-Al共晶合金超塑性变形特性的研究   总被引:5,自引:0,他引:5  
通过对热轧态Zn-Al共晶合金的拉伸试验,研究了金属超塑性变形的特点。试验结果表明,应变速率敏感性指数m值在试验范围内(v=1.67×10~(-2)mm/s,t=200-300℃)随温度升高而呈线性上升;超塑性流动特性曲线(logσ-logε)有较高的斜率(m>0.4)而最大斜率出现在第二区的中等应变速率范围;m值随应变量的变化规律受多种因素的影响,但一般是随应变量的增加而下降;应变硬化现象是超塑性变形的特性之一。  相似文献   

10.
对Cr12MoV钢进行表面高频淬火后超塑性焊接,选用的工艺参数为:加热温度为800℃,焊接时间t=5min,预压应力σ0=56.6MPa,初始应变速率ε0=2.5×10-4s-1。对接头组织进行了观察和分析。试验结果表明,焊接区局部高频淬火后的Cr12MoV钢在其超塑变形温度及应变速率范围内,经短时间超塑焊接,其接头抗拉伸强度可以达到母材值。  相似文献   

11.
对Crl2MoV钢进行表面高频淬火后超塑性焊接,选用的工艺参数为:加热温度为800℃,焊接时间t=5min,预压应力σ0=56.6MPa,初始应变速率ε0=2.5×10^-4s^-1。对接头组织进行了观察和分析。试验结果表明,焊接区局部高频淬火后的Crl2MoV钢在其超塑变形温度及应变速率范围内,经短时间超塑焊接,其接头抗拉伸强度可以达到母材值。  相似文献   

12.
本文将诸薄筒件成形工序,按照主应力的大小顺序、找出其在轴对称平面应力状态屈服轨迹上所对应的区域,进而给出无摩擦条件ε_θ、ε_ρ和ε_τ随角φ=tg~(-1)σ_ρ/σ_θ的变化规律。文章还给出了锥面成形工序在有摩擦条件下,ε_θ、ε_ρ和ε_τ沿φ角的分布曲线。  相似文献   

13.
Ti-17合金的热压缩变形行为研究   总被引:2,自引:0,他引:2  
通过热模拟压缩试验,测试了Ti-17合金在温度T=805~945℃,应变速率ε=10(-3)~80s(-1)、变形程度ε=50%范围内的真应力-应变曲线,研究了不同温度、不同应变速率下的流动应力及组织变化规律。发现,在(α+β)两相区降低温度或提高应变速率,流动应力σ变化较大,动态再结晶易于进行;在β区通常只发生动态回复,流动应力σ随温度和应变速率变化较小,高温、低应变时发生连续再结晶。试验还用Zener-Hollomon因子确定了该台金发生连续再结晶的临界因子Zc的数值,logZC=41.2。  相似文献   

14.
Inconel 625合金高速热变形动态再结晶的临界条件   总被引:2,自引:2,他引:0       下载免费PDF全文
通过等温热压缩试验获得Inconel625合金在变形温度为1000~1200℃,应变速率为1~80S^-1条件下的真应力-应变曲线,利用加工硬化率,结合lnθ-ε曲线上的拐点判据及-δ(1nθ)/δε-ε曲线上的最小值,来研究Inconel625合金动态再结晶的临界条件。结果表明,在该实验条件下,Inconel625合金的lnθε曲线均出现拐点特征,对应的-δ(lnθ)/δε-ε曲线出现最小值,该最小值处对应的应变即为临界应变;临界应变随应变速率的增大和变形温度的降低而增加,并且临界应变和峰值应变之间有一定的关系,即εc=0.69εp;动态再结晶时临界应变的预测模型可以表示为εc=4.41×10^-4Z^0.14261。  相似文献   

15.
雷磊  梁益龙  杨明  姜云  龙绍檑 《材料导报》2016,30(18):97-103
在DIL805A/T热模拟机上对60Si2CrVAT弹簧钢进行了等温单向热拉伸实验,研究了该弹簧钢在温度900~1050℃、应变速率0.001~1s-1条件下的高温变形及动态再结晶行为。使用包含变形激活能Q和温度T的双曲正弦形式修正的Arrhenius关系来描述60Si2CrVAT弹簧钢高温拉伸变形时的最大变形抗力方程;在此基础上,引入参数α(ε)、n(ε)、Q(ε)和A(ε)得到包含σ、ε、T、ε的本构方程。结果表明,由本构方程计算得到的应力值和实验值有较好相关性(R~2=0.98985),平均相对误差绝对值为3.6646%;最后采用加工硬化率法通过对θ-σ和lnθ-ε曲线进行三次多项式拟求解拐点的方法,得到了不同变形条件下发生动态再结晶的临界应力和临界应变值,建立了临界应力、临界应变和Z参数的关系,得到了动态再结晶的临界应力和临界应变方程。  相似文献   

16.
在Gleeble-1500D热模拟机上对粉末冶金制备的新型医用Ti-14Mo-2.1Ta-0.9Nb-7Zr合金进行等温热压缩实验,研究该合金在温度为780~960℃,应变速率为0.001~1s-1,变形为60%的条件下的高温变形及动态再结晶行为。采用包含变形激活能Q和温度T的双曲正弦形式修正的Arrhenius关系来描述该合金高温压缩变形时的最大变形抗力方程;并引入参数α(ε),n(ε),Q(ε)和A(ε)得到包含σ,ε·,T,ε的本构方程。结果表明:由本构方程计算得到的应力值和实验值有较好相关性(R=0.99430),平均相对误差为5.327%;最后采用加工硬化率法通过对θ-σ和lnθ-ε曲线进行三次多项式拟求解拐点的方法,得到了不同变形条件下发生动态再结晶的临界应力和临界应变值,建立了临界应力和Z参数的关系,获得动态再结晶的临界应力方程,而临界应变εc主要集中在0.01~0.04,不同变形条件下该合金发生动态再结晶的临界应变变化极小。  相似文献   

17.
本文报道 Nb,Ti 微合金钢的热变形动态模拟变形抗力模型。在试验中用热加工模拟试验机进行高温压缩试验,其变形温度为1123—1423K,变形速率为0.1—60s~(-1)。结果表明,在峰值以前该钢种的流变应力数学模型为:σ=5.99.ε~(0.167)·(?)~(6.47×10~(-5)·T)·exp(4064/T)。形变激活能(Q)为444 kJ/mol,β系数为0.080。峰值应力(σ_p),临界应变(ε_c)和温度补偿应变速率参数(Z)之间的关系分别为:σ_p=12.56·lnZ-391.8;lnε_c=0.157·lnZ-7.39。  相似文献   

18.
进行新型奥氏体耐热钢(CHDG-A)的热压缩实验,研究了在900~1100℃、应变速率为0.01-10 s-1条件下这种钢的热变形特征。结果表明:随着变形温度的提高或应变速率的降低这种钢的流变应力显著降低。基于Arrhenius模型构建了这种材料的本构方程,得到CHDG-A热变形激活能Q为515.618 kJ/mol。微观组织分析结果表明,动态再结晶(DRX)是该材料在实验热变形条件下最主要的软化方式,DRX形核主要通过晶界弓出,变形温度的升高和应变速率降低均有利于再结晶形核。基于真应力-应变曲线求得动态再结晶用Z参数表示的峰值和临界值(σpεpσcεc),并确定了εc/εp,σc/σp的比值分别为0.52和0.98。同时,还基于Avrami方程建立了CHDG-A的DRX动力学模型。  相似文献   

19.
目的研究20A低碳钢在高温条件下的热变形行为及本构模型。方法采用Gleeble-1500型热模拟压缩试验,研究在不同变形温度及变形速率条件下,材料的真实应力-应变之间的关系。结果 20A钢属于对温度和应变速率都敏感的材料,其流变曲线呈现出周期性动态再结晶特征。结论通过对实验数据运用最小二乘法、多元线性回归方法及Arrhenius方程处理,得到了20A材料热变形本构模型为σ=8.8650ε0.1445ε·0.1283exp(3475.23/T),为20A钢塑性加工过程的控制及模拟提供了理论基础。  相似文献   

20.
为了探究Fe-8Mn-3Al-0.2C轻质高强钢的热变形行为,在变形温度为1 123~1 423 K,应变速率0.01,0.1,1,10 s-1,真应变为0.6的条件下利用Gleeble-1500热模拟实验机进行热压缩模拟实验,通过实验机记录温度、真应力与真应变的关系,观察组织形貌演变规律.结果表明:流变应力曲线分为3个阶段,即加工硬化、动态软化及稳定流变应力;当变形温度升高和应变速率下降时,峰值应力及其所对应的临界应变减小,说明更容易发生动态再结晶;在变形初期ε0.1时,流变应力曲线出现应变增加而应力几乎保持不变的类屈服平台;压缩后的组织为奥氏体/铁素体双相组织,动态再结晶先在铁素体内部发生,随后由奥氏体承担;随着变形温度的升高和应变速率的下降,晶粒尺寸细化并趋于均匀,说明动态再结晶完成的更充分;本实验钢在本文处理工艺及0.6真应变下的最佳热加工工艺参数区间为1 250~1 400 K,应变速率为0.03~0.3 s~(-1);受合金元素影响,实验用钢的表观应力指数和热变形激活能分别为4.588 9和250.6 k J/mol,本构方程为ε·=6.20×10~9[sinh(0.009σ)]~(4.588 9)exp(-(250 601)/(8.314T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号