首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(CuO)1–z(La2O3)z/2 based catalysts with 0.0z1.0 supported on -Al2O3 have been prepared in situ and the phases formed have been identified by XRD, SEM and TEM/EDS studies. The catalyst with z=0.5 exhibited the best catalytic activity for oxidation of CO (T 50=295 and 390C with degrees of conversions of 93 and 92% at 450C under rich and lean conditions, respectively) and C3H6 (291 and 414C; 93 and 83%) and reduction of NO (405C; 60 and 0%). This catalyst contained appreciable amounts of the perovskite phase LaAl1–xCuxO3 and the enhanced catalytic properties are ascribed to the presence of this phase. Addition of Pd to this catalyst implied that the degree of conversion of NO increased and that the light-off temperatures for all involved gas species decreased. Ageing experiments revealed that LaAl1–xCuxO3 decomposed and that Cu containing Pd particles were formed during this procedure which in turn deteriorated the catalytic properties of the catalyst.  相似文献   

2.
The styrene conversion and product (viz. styrene oxide, phenyl acetaldehyde, benzaldehyde) selectivity in the liquid-phase epoxidation of styrene by H2O2 (H2O2/styrene = 2) over TS-1 (Si/Ti = 80) and -Al2O3 are strongly influenced by the presence of water and/or base (viz. urea and pyridine) in the reaction mixture. The TS-1 showed high styrene conversion activity but no epoxide selectivity in the absence of any base. When anhydrous H2O2 (24% H2O2 in ethyl acetate), with the continuous removal of the reaction water (using the DeanStark trap), was used instead of 50% aqueous H2O2, both the conversion and epoxide yield are increased drastically for the -Al2O3, whereas for the TS-1, the increase in the conversion was quite small and there was also no improvement in the epoxide selectivity and/or yield. However, when urea or pyridine was added in the reaction mixture, the epoxide selectivity for both the catalysts was increased depending on the concentration of the base added; the increase in the selectivity was very large for the TS-1 but small for the -Al2O3. Poisoning of the acid sites of the -Al2O3 by the chemisorbed ammonia or pyridine (at 100 °C) caused a small decrease in the conversion, but it also caused a large decrease in the epoxide selectivity. However, the pyridine poisoning of the TS-1 caused a little beneficial effect, a small increase in the epoxide selectivity. The ammonia poisoning of the TS-1, however, resulted in a small decrease in the conversion with no improvement in the epoxide selectivity. As compared to the TS-1, the -Al2O3 catalyst showed a much better performance in the epoxidation by anhydrous H2O2 with the continuous removal of the reaction water. However, the reaction water, if not removed continuously, is detrimental to the -Al2O3, causing a large decrease in the catalytic activity and selectivity for styrene oxide but an increase in the selectivity for benzaldehyde.  相似文献   

3.
The acidities of-Al2O3, HNa-Y zeolite, and H-mordenite have been examined by microcalorimetric measurements of ammonia adsorption at 423 K. The differential heat of adsorption on -Al2O3 decreases continuously with ammonia coverage from an initial value of 165 kJ/ mol at low coverages to a value of 70 kJ/mol at higher coverages. The differential heat of adsorption on HNa-Y zeolite shows similar behavior, with a plateau of nearly constant heat at 115 kJ/mol. H-mordenite exhibits a nearly constant heat of adsorption equal to 155 kJ/mol. The results from these microcalorimetric measurements are in agreement with thermogravimetric and temperature-programmed desorption results collected at higher temperatures. Adsorbed ammonia has sufficient mobility at 423 K to equilibrate with the catalyst surface on the time scale of microcalorimetric measurements, and these measurements provide an effective method for quantifying acid site distributions of solid-acid catalysts.  相似文献   

4.
In view of the importance for CoxOy,-MoO3/-Al2O3 hydrodesulphurization (HDS) catalysts, the reactivity of cobalt oxide layers towards cobalt aluminate formation was investigated on both MoO3-covered and bare -Al2O3 substrates. Co3O4/MoO3/-Al2O3 and Co3O4/-Al2O3 systems were prepared by vapour-deposition of MoO3 (12 × 1015 Mo atoms/cm2) and Co (400 × 1015 Co atoms/cm2) layers onto a -Al2O3 substrate, followed by oxidation of the Co layer to Co3O4. After annealing at 800°C for 40 h, the interfacial reaction to cobalt aluminate was assessed using Rutherford backscattering spectrometry. The presence of molybdenum oxide appeared to enhance cobalt aluminate formation. The Mo atoms, which spread out over the entire cobalt-containing layer, presumably caused a high defect density, which explains the observed higher reaction rate. The amount of MoO3 was much too low to stabilize all cobalt atoms by cobalt molybdate formation.  相似文献   

5.
A titanium-modified -alumina-supported CuO catalyst has been prepared and used for methanol synthesis from CO2 hydrogenation. XRD and TPR were used to characterize the phase, reduction property and particle size of the reduced catalyst. The addition of Ti to the CuO/-Al2O3 catalyst made the copper in the catalyst exist in much smaller crystallites and exhibit an amorphous-like structure. The adding of Ti made the reduction peak shift toward lower temperature in comparison with the CuO/-Al2O3 catalyst. The effect of the addition of Ti and the reaction conditions on the activity and selectivity to methanol from CO2 hydrogenation were investigated. The activity was found to increase with increasing surface area of metallic copper, but it is not a linear relationship. This indicated that the catalytic activity of the catalysts depends on both the metallic copper area and the synergy between the copper and titanium dioxide. The effect of contact time on the relative selectivity (=SCH30H /SCO) and selectivity of methanol were also investigated. The results indicated that methanol was formed directly from the hydrogenation of CO2.  相似文献   

6.
Meso-porous Al2O3-supported Ni catalysts exhibited the highest activity, stability and excellent coke-resistance ability for CH4 reforming with CO2 among several oxide-supported Ni catalysts (meso-porous Al2O3 (Yas1-2, Yas3-8), -Al2O3, -Al2O3, SiO2, MgO, La2O3, CeO2 and ZrO2). The properties of deposited carbons depended on the properties of the supports, and on the meso-porous Al2O3-supported Ni catalyst, only the intermediate carbon of the reforming reaction formed. XRD and H2-TPR analysis found that mainly spinel NiAl2O4 formed in meso-porous Al2O3 and -Al2O3-supported catalysts, while only NiO was detected in -Al2O3, SiO2, CeO2, La2O3 and ZrO2 supports. The strong interaction between Ni and meso-porous Al2O3 improved the dispersion of Ni, retarded its sintering and improved the activated adsorption of CO2. The coking reaction via CH4 temperature-programed decomposition indicated that meso-porous Al2O3-supported Ni catalysts were less active for carbon formation by CH4 decomposition than Ni/-Al2O3 and Ni/-Al2O3.  相似文献   

7.
Supported Ni/-Al2O3 catalysts were studied in the gas phase hydrodechlorination of substituted chlorobenzenes. The catalytic properties of the catalysts were shown to be determined by the metal nickel. A correlation between the rate of the gas phase hydrodechlorination of substituted chlorobenzene and donor-acceptor properties of substituents was established. The electron-donor substituents increase and the electron-acceptor ones decrease their reactivity. The correlation analysis of data treated via the Hammett equation shows that hydrodechlorination on Ni/-Al2O3 catalysts is a reaction of electrophilic type.  相似文献   

8.
The activity and selectivity in the catalytic reduction of NO by a mixture of CO and H2 of three PdO-MoO3/-Al2O3 catalysts are compared in the presence of varying amounts of oxygen at reaction temperatures from 100 to 550°C. The catalysts were prepared by different methods and contain about 2% Mo and 2% Pd. Results are compared with those for PdO/-Al2O3, PdO-MoO3/-Al2O3 containing 2% Pd and 20% Mo, and a commercial Pt-Rh catalyst. The PdO-MoO3/-Al2O3 catalysts are more active for the selective reduction of NO to N2 and N2O than PdO/-Al2O3 under slightly oxidizing conditions at temperatures from 300 to 550°C. At these reaction conditions, the fresh PdO-MoO3/-Al2O3 catalysts are comparable with a commercial Pt-Rh catalyst. The improved activity of PdO-MoO3/-Al2O3 relative to PdO/-Al2O3 is believed to be due to the interaction between Pd and Mo. The effect of O2 on the activity and selectivity of these catalysts is different in the reduction of NO by H2, by CO, and by a mixture of H2 and CO. The results using the mixture of reductants cannot be inferred from the results with the single reductants.  相似文献   

9.
The catalytic activity and selectivity of three PdO-MoO3/-Al2O3 catalysts containing about 2% Pd and 2% Mo were studied for the reduction of NO by h2 in the presence of varying amounts of oxygen at temperatures from 50 to 550 °C. The results are compared with those for PdO/-Al2O3, PdO-MoO3/-Al2O3 containing 2% Pd and 20% Mo, and a commercial Pt-Rh catalyst. In the absence of oxygen, the conversion of NO to N2 and N2O is higher on the three catalysts than it is on PdO/-Al2O3 at 500 and 550 °C. In the presence of oxygen, the yields of N2 and N2O are generally lower on two of the PdO-MoO3/-Al2O3 catalysts than on PdO/-Al2O3.  相似文献   

10.
Oxidative dehydrogenation of propane has been studied on Mo/-Al2O3 catalysts with 13 wt% of MoO3 and promoted with Cr. The catalysts were characterized by BET, X-ray diffraction, XPS, TPR, TPO and isopropanol decomposition. The ODH results indicated an important increase in propane conversion with Cr loading increase from 0 to 5 wt%. At 773 K the conversion increased 1.5 times whereas the selectivity to propene was not significantly modified. The higher activities obtained on Cr-doped catalysts provide for the technologically important possibility of carrying out the reaction at lower temperatures.  相似文献   

11.
The catalytic activity for the reduction of NO by CO of five PdO-MoO3/-Al2O3 catalysts is compared in the presence of varying amounts of oxygen at reaction temperatures from 25 to 550 °C. The samples were prepared by different methods and contain about 2% of Mo and 2% Pd. Results are compared with the activities and selectivities of PdO/ -A12O3 and PdO-MoO3/-Al2O3 containing 2% Pd and 2% Pd + 20% Mo, respectively. All catalysts showed appreciable activity at temperatures between 300 and 550 °C and at stoichiometric ratios,R, of the oxidizing to reducing gases of 0.1 <R < 1.1. The activity of three PdO-MoO3/ -A12O3 catalysts with low concentrations of Mo and Pd was found to be significantly higher than the activity of PdO/-Al2O3 at 1.1 <R < 1.3 and at temperatures between 300 and 500 °C. The improved activity is ascribed to the interaction of the active metals.  相似文献   

12.
F. Gracia  W. Li  E.E. Wolf 《Catalysis Letters》2003,89(3-4):235-242
From EXAFS (extended X-ray absorption fine structure) analysis, gold was found to have mainly oxygen in its nearest coordination shell in the fresh Au/-Al2O3 catalyst prepared by AuCl3 impregnation and vacuum drying at room temperature. After thermal treatment under helium, chlorine appeared within the nearest neighbors of gold and more chlorine showed up as the treatment temperature was increased from 323 to 473K. No reduced Au species was observed up to 473K under He. However, the gold became reduced during CO oxidation at 373K and above. The precursor AuCl3 was found to deposit on -Al2O3 via bonding to surface hydroxyl groups. This catalyst showed nearly 100% CO conversion at 573K, but a very low activity at 373 K under the conditions used in this study. Neither the residual chlorine nor the extent of reduction can explain the low activity at lower temperatures.  相似文献   

13.
aluminasupported catalysts show promise as lean NOx catalysts. The role of alumina in influencing the structural and chemical properties of the active phase supported on it is discussed using some effective aluminabased lean NOx catalysts. These include Ag/Al2O3, CoOx/Al2O3 and SnO2/Al2O3. Alumina plays an important role in stabilizing Ag in the oxidic phase and cobalt in the 2+ oxidation state. For SnO2/Al2O3, alumina increases the SnO2 surface area. On both Ag/Al2O3 and SnO2/Al2O3, alumina also participates actively in the NOx reduction reaction. An active organic intermediate is formed on Ag or Sn oxide which reacts with NOx subsequently on alumina to form N2.  相似文献   

14.
To study the influence of steam on the solid state reaction between MeO (Me = Ni, Co, Cu or Fe) and Al2O3, MeO/-Al2O3 and MeO/-Al2O3 model catalysts were kept in either N2/20% O2 or N2/O2/30% H2O at 500–1000°C. The samples were subsequently analyzed with RBS and FTIR. Surprisingly, nickel, cobalt and copper volatilized when MeO/-Al2O3 or MeAl2U4/-Al2O3 samples were annealed in the presence of 0.3 atm steam at 1000°C. Especially copper was found to volatilize very rapidly in the presence of steam, even at a temperature as low as 800°C. FTIR spectra of steam-treated NiO/-Al2O3 samples showed the incorporation of hydroxyl groups in the nickel oxide layer. This observation and an excellent agreement with thermochemical calculations support our conclusion that the volatile species are metal hydroxides. The solid state reaction of MeO with-Al2O3 was found to proceed at a much higher rate in the presence of 0.3 atm steam at 500–800°C, presumably as a result of an enhanced surface mobility of Me and Al ions along the grain boundaries and the surfaces of the internal pores of the-Al2O3 support, when steam is present.  相似文献   

15.
The promotion of Ag/-Al2O3 by adding alkali metals (Li, Na, K, Cs) for selective catalytic reduction of NO with C3H6 was studied in this work. The activity of NO reduction was enhanced by addition of Cs to Ag/-Al2O3 in the presence of excess oxygen and SO2. The stability and growth of silver oxide particles were promoted and the dispersion of silver particles on -Al2O3 was improved by the addition of 0.5 wt% Cs and 1 wt% Cs to 2 wt% Ag/-Al2O3, respectively. The results were confirmed by H2 TPR, UV-Vis DRS, TEM, and XPS.  相似文献   

16.
B.S. Liu  C.T. Au 《Catalysis Letters》2003,85(3-4):165-170
A stable La2NiO4 catalyst active in CH4/CO2 reforming has been prepared by a sol–gel method. The catalyst was characterized by techniques such as XRD, BET, TPR and TG/DTG. The results show that the conversions of CH4 and CO2 in CH4/CO2 reforming over this catalyst are significantly higher than those over a Ni/La2O3 catalyst prepared by wet impregnation and those over a La2NiO4/-Al2O3 catalyst. The TG/DTG outcome confirmed that the amount of carbon deposition observed in the former case was less than that observed in the latter two cases, a phenomenon attributable to the uniform dispersion of nanoscale Ni particles in the sol–gel-generated La2NiO4 catalyst.  相似文献   

17.
From supplementary in situ Raman spectroscopic studies of active-oxygen species on non-reducible rare-earth-oxide-based catalysts in the oxidative coupling of methane (OCM) and structural adaptability considerations, further support has been obtained for our proposal that there may be an active and elusive precursor (of O2 and O2 2– adspecies), most probably O3 2– formed from reversible redox coupling of an O2 adspecies at an anionic vacancy with a neighboring O2– in the surface lattice. This active precursor may initiate H abstraction from CH4 and be itself converted to OH+O2 , or it may abstract an electron from the oxide lattice and be converted to O2 2–+O. The prospect of developing this type of OCM catalysts is discussed.  相似文献   

18.
The surface acidic properties of two series of samples,-Al2O3 and-Al2O3-SnO2 after reaction with CCl2F2/H2 (CFC12/H2), have been investigated by solid state high resolution CP/MAS 31-PNMR, using trimethylphosphine (TMP) as a probe molecule. It was found after reaction, that Brønsted acid sites were formed on the-Al2O3 surface. The longer the reaction time, the more rigidly TMP bonded to the acid sites. For the-Al2O3-SnO2 system, Brønsted acid sites were also found on both the Al2O3 and SnO2 surfaces after reaction of the-Al2O3-SnO2 system with CFC12/H2. The signal intensity relevant to these sites, indicates that the SnO2 component is attached to, and therefore covers Brønsted sites of-Al2O3. Two types of Lewis acid site initially present on SnO2 were not observed after reaction with CFC12/H2.  相似文献   

19.
T. Lei  J.S. Xu  W.M. Hua  Y. Tang  Z. Gao 《Catalysis Letters》1999,61(3-4):213-218
A series of Al2O3supported SO 4 2– /ZrO2 superacid catalysts (named SZ/Al2O3) were prepared by a precipitation method and their catalytic behavior for nbutane isomerization at low temperature in the absence of H2 and at high temperature in the presence of H2 was studied in this paper. The catalytic activities of some of these catalysts were enhanced significantly at both low and high temperatures. At 250°C after 6 h on stream, the steady activity of the most active sample, 60%SZ/Al2O3, is about two times higher than that of conventional SZ. The texture properties of catalysts were studied by the methods of XRD and the adsorption of N2. Experimental evidence of IR of adsorbed pyridine indicates that the significant activity enhancements of SZ/Al2O3 catalysts are caused by the increasing of the amount of strong acid sites.  相似文献   

20.
Microcalorimetric and infrared spectroscopic studies of ammonia and carbon dioxide adsorption have been used to study the effects on the acid/base properties of adding tin oxide to-Al2O3. The addition of SnO2 to-Al2O3 decreases the number of strong acid sites (heats of ammonia adsorption higher than 140 kJ/mol), increases the number of weaker acid sites (heats from 110 to 130 kJ/mol), and decreases slightly the number of basic sites (heats of carbon dioxide adsorption from 70 to 150 kJ/mol). In contrast, the presence of SnO on-Al2O3 decreases the total number of acid sites (heats of ammonia adsorption higher than 70 kJ/mol) and eliminates most of the basic sites. Infrared spectroscopy of adsorbed ammonia reveals interactions between aluminum cations and stannous ions, leading to a decrease in the strength of the Lewis acid sites associated with aluminum cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号