首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella was studied in apple, orange, pineapple, and white grape juice concentrates and banana puree. Pouches of juice concentrate or puree were inoculated with pathogens at a level > or = 10(3) CFU/g and stored at -23 degrees C (-10 degrees F). Pathogen survival was monitored at 6 and 24 h, once a week for four consecutive weeks, and biweekly thereafter until 12 weeks. When pathogens were not detectable by direct plating, samples were enriched in universal preenrichment broth for 72 h and plated on selective media. Results showed that E. coli O157:H7, L. monocytogenes, and Salmonella were recoverable from all five concentrates through 12 weeks of storage at -23 degrees C.  相似文献   

2.
Sauerkraut was produced from shredded cabbage, as is typical in the United States, and from whole head cabbages, which is a traditional process in parts of Eastern Europe. The sauerkraut was inoculated with five strain mixtures of Escherichia coli O157:H7 and Listeria monocytogenes, and the populations of these bacteria, as well as lactic acid bacteria, pH, and titratable acidity, were monitored over the course of fermentation. Fermentation variables were temperature (18 and 22 degrees C) and salt concentration (1.8, 2.25, and 3%). For most of the analyses, the type of cabbage processing was a significant factor, although within cabbage type, neither salt nor fermentation temperature had significant effects. The final pH of the whole-head sauerkraut was lower than the shredded sauerkraut, but the titratable acidity was significantly higher in the shredded sauerkraut. E. coli O157:H7 and L. monocytogenes persisted in the brines for most of the fermentation, although at the end of the fermentations (15 days for shredded, 28 days for whole head), neither pathogen had detectable populations. E. coli populations decreased more rapidly in the shredded sauerkraut even though the pH was higher because of the higher total acidity in the shredded sauerkraut. Acid-tolerant strains of E. coli and L. monocytogenes were isolated from both shredded and whole-head sauerkraut at different salt concentrations and temperatures after 15 days of fermentation and could be detected at 35 days in the wholehead sauerkraut.  相似文献   

3.
This study aimed to investigate the inactivation effect of 150 KeV low-energy X-ray on Salmonella Typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes that were inoculated in dry cardamom. The D10 value for E. coli O157:H7 was 71.43 Gy and the tR values for S. Typhimurium, L. monocytogenes, and S. aureus were 53.57, 87.74, and 114.64 Gy, respectively. The irradiation did not significantly affect the amount of mono-unsaturated fatty acids (MUFAs) in cardamom; however, the content of poly-unsaturated fatty acids (PUFAs) decreased by approximate 20%. No 2-alkylcyclobutanones (2-ACBs), dimethyl disulfide and 3-methyl-thiophene were detected in the irradiated dry cardamom. These findings indicated that 150 KeV low-energy X-ray could be applied to effectively inactivate pathogens in dry cardamom.Industrial relevanceIt was shown that low-energy X-ray irradiation up to 350 Gy did not generate 2-ACBs, dimethyl disulfide and 3-methyl-thiophene in dry cardamom, which are among the major concerns with the application of food irradiation. The outcomes of this research highlight the potential of low-energy X-ray for the preservation of low moisture foods.  相似文献   

4.
The antimicrobial activity of two pediocin-producing transformants obtained from wild strains of Lactococcus lactis on the survival of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 during cheese ripening was investigated. Cheeses were manufactured from milk inoculated with the three pathogens, each at approximately 6 log cfu mL−1. Pediococcus acidilactici 347 (Ped+), Lc. lactis ESI 153, Lc. lactis ESI 515 (Nis+) and their respective pediocin-producing transformants Lc. lactis CL1 (Ped+) and Lc. lactis CL2 (Nis+, Ped+) were added at 1% as adjuncts to the starter culture. After 30 d, L. monocytogenes, S. aureus and E. coli O157:H7 counts were 5.30, 5.16 and 4.14 log cfu g−1 in control cheese made without adjunct culture. On day 30, pediocin-producing derivatives Lc. lactis CL1 and Lc. lactis CL2 lowered L. monocytogenes counts by 2.97 and 1.64 log units, S. aureus by 0.98 and 0.40 log units, and E. coli O157:H7 by 0.84 and 1.69 log units with respect to control cheese. All cheeses made with nisin-producing LAB exhibited bacteriocin activity throughout ripening. Pediocin activity was only detected throughout the whole ripening period in cheese with Lc. lactis CL1. Because of the antimicrobial activity of pediocin PA-1, its production in situ by strains of LAB growing efficiently in milk would extend the application of this bacteriocin in cheese manufacture.  相似文献   

5.
The survival of single strains or cocktails of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes was evaluated on walnut kernels. Kernels were separately inoculated with an aqueous preparation of the pathogens at 3 to 10 log CFU/g, dried for 7 days, and then stored at 23°C for 3 weeks to more than 1 year. A rapid decrease of 1 to greater than 4 log CFU/g was observed as the inoculum dried. In some cases, the time of storage at 23°C did not influence bacterial levels, and in other cases the calculated rates of decline for Salmonella (0.05 to 0.35 log CFU/g per month) and E. coli O157:H7 (0.21 to 0.86 log CFU/g per month) overlapped and were both lower than the range of calculated declines for L. monocytogenes (1.1 to 1.3 log CFU/g per month). In a separate study, kernels were inoculated with Salmonella Enteritidis PT 30 at 4.2 log CFU/g, dried (final level, 1.9 log CFU/g), and stored at -20, 4, and 23°C for 1 year. Salmonella Enteritidis PT 30 declined at a rate of 0.10 log CFU/g per month at 23°C; storage time did not significantly affect levels on kernels stored at -20 or 4°C. These results indicate the long-term viability of Salmonella, E. coli O157:H7, and L. monocytogenes on walnut kernels and support inclusion of these organisms in hazard assessments.  相似文献   

6.
Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes may contaminate similar types of food and cause foodborne disease. The objective of this study was to develop a selective enrichment broth for simultaneous enrichment of Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes (SSEL) using nalidixic acid, acriflavine, lithium chloride, and sodium cholate as selective agents. Developed SSEL broth not only enriched the target pathogens to 5 log10 CFU/ml after 18 hr incubation at 37°C with 10–100 CFU/mL of inoculation concentration, but also could successfully support the simultaneous enrichment of target pathogens with similar growth rates and inhibit the growth of most nontarget bacteria effectively. The enrichment effect of SSEL was confirmed by artificial contamination test coupled with multiplex PCR. In summary, SSEL has been shown to be a promising multiplex selective enrichment broth for the detection of the four pathogens on a single-assay platform.  相似文献   

7.
The fate of three pathogens Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli O157:H7 that were inoculated in fish roe salad and aubergine salad with or without preservatives after being adapted in acid environment or not, was determined. The salads were stored at 10  ° C and the pathogens population was counted at regular intervals. Parameters (lag time, death rates calculated with Baranyi equation) were used to compare the behaviour of the pathogens. In the absence of preservatives the pathogens survived during the 15 days of storage. A 1 log reduction was observed for Listeria and 2 logs reduction for Salmonella and E. coli in both salads. In most cases, acid adaptation decreased the death rate even in the presence of preservatives. The addition of sorbic and benzoic acid in the salads increased the death rate of the pathogens during storage significantly and they were not detected at 7–10 days for Salmonella , 8–12 days for Listeria and 5 days for E. coli . It is concluded that a well-studied combination of hurdles is appropriate to ensure safety of home-made traditional salads free of preservatives.  相似文献   

8.
Survival of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes was evaluated in cranberry juice concentrates to determine if a 5-log reduction could be achieved without any other treatment. Inactivation at 0 degrees C in concentrates with different oBrix levels was determined for a five-strain composite of the individual pathogens in two physiological states. In concentrates at 18 to 46 oBrix (pH 2.2 to 2.5), all three pathogens (stationary-phase or acid-adapted cells) showed at least a 5-log reduction after a 6- or 24-h incubation. At 14 oBrix (pH 2.5), a reduction greater than 5 log was obtained for L. monocytogenes and Salmonella after up to 24 h of incubation, but for E. coli O157:H7, 96 h of incubation was needed to consistently obtain a reduction greater than 5 log. All three pathogens in the stationary phase survived longer than in the acid-adapted phase under the same conditions. The most resistant was stationary-phase E. coli O157:H7, and the most sensitive was acid-adapted L. monocytogenes. The rate of pathogen destruction increased with increasing oBrix level of the juice concentrate, which suggests that concentrated acids and/orsome intrinsic compounds may play an important role in the bactericidal effects of cranberry juice concentrates.  相似文献   

9.
Adequate lethality in jerky manufacture destroys appropriate levels of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Staphylococcus aureus. Our goal was to evaluate the lethality of four home-style dehydrator processes against these pathogens. Whole-muscle beef strips were inoculated with L. monocytogenes (five strains), S. aureus (five strains), or a mixed inoculum of E. coli O157:H7 (five strains) and Salmonella (eight strains). After allowing for attachment, strips were marinated in Colorado-, Original-, or Teriyaki-seasoned marinade for 22 to 24 h and dried in three home-style dehydrators (Garden Master, Excalibur, and Jerky Xpress) at 57.2 to 68.3°C. Samples were taken postmarination; after 4, 6, and 8 h of drying; and after drying, followed by heating for 10 min in a 135°C oven. Surviving inocula were enumerated. With a criterion of ≥ 5.0-log CFU/cm2 reduction as the standard for adequate process lethality, none of the samples achieved the target lethality for any pathogen after 4 h of drying, even though all samples appeared "done" (water activity of less than 0.85). A postdehydration oven-heating step increased the proportion of samples meeting the target lethality after 4 h of drying to 71.9, 88.9, 55.6, and 77.8% for L. monocytogenes-, S. aureus-, E. coli O157:H7-, and Salmonella-inoculated samples, respectively, and after an 8-h drying to 90.6, 94.4, 83.3, and 91.7% of samples, respectively. Significantly greater lethality was seen with higher dehydrator temperature and significantly lower with Teriyaki-marinated samples. Heating jerky dried in a home-style dehydrator for 10 min in a 135°C oven would be an effective way to help ensure safety of this product.  相似文献   

10.
ABSTRACT:  Decimal reduction times ( D -values) and thermal resistance constants ( z -values) for 3 foodborne pathogenic bacteria in formulated ready-to-eat breaded pork patties were determined with thermal inactivation studies. Meat samples, inoculated with Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes cultures or uninoculated controls, were packaged in sterile bags, immersed in circulated water bath, and held at 55, 57.5, 60, 62.5, 65, 67.5, and 70 °C for different durations of time. The D - and z -values were determined by using a linear regression model. Average calculated D -values for E. coli O157:H7, Salmonella , and L . monocytogenes at a temperature range of 55 to 70 °C were 32.11 to 0.08 min, 69.48 to 0.29 min, and 150.46 to 0.43 min, respectively. Calculated z -values for E. coli O157:H7, Salmonella , and L. monocytogenes were 5.4, 6.2, and 5.9 °C, respectively. The results of this study will be useful to food processors to validate thermal lethality of the studied foodborne pathogens in ready-to-eat breaded pork patties.  相似文献   

11.
A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study's findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.  相似文献   

12.
Mexican-style raw meat sausages (chorizos) are not regulated in California when they are produced in small ethnic food markets. These sausages are sold uncooked, but their formulation imparts a color that may lead the consumer to assume that they are already cooked, and thus the chorizos may sometimes be eaten without proper cooking. If pathogens are present in such cases, illness may result. Survival of Salmonella and Escherichia coli O157:H7 in chorizos was evaluated under different storage conditions selected based on an initial survey of uninspected chorizos in California. Chorizos were formulated with five different initial water activity (aw) values (0.85, 0.90, 0.93, 0.95, and 0.97), stored under four conditions (refrigeration at 6 to 8 degrees C, room temperature at 24 to 26 degrees C, under a hood at 24 to 26 degrees C with forced air circulation, and incubation at 30 to 31 degrees C with convective air circulation), and sampled after 1, 2, 4, and 7 days. The initial pH was 4.8 and remained near 5.0 from day 1 of the sampling period. Two separate studies of packs inoculated with five-strain cocktails of Salmonella and of E. coli O157:H7 were performed twice for each initial aw. The three lowest aw values (0.85, 0.90, and 0.93) and the incubation and hood storage conditions were more effective (P < or = 0.05) at reducing the target pathogen levels in chorizos than were the two highest aw values (0.95 and 0.97) and the refrigeration storage condition, regardless of storage time. These results provide a scientific basis for guidelines given to producers of uninspected chorizo and should reduce the probability of foodborne illness associated with these products.  相似文献   

13.
A protocol enabling simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains was devised and evaluated using artificially contaminated fresh produce. Association of Official Analytical Chemists (AOAC)-approved polymerase chain reaction (PCR) detection methods for three human pathogens were modified to enable simultaneous and real-time detection with high throughput capability. The method includes a melting-curve analysis of PCR products, which serves as confirmatory test. The modified protocol successfully detected all three pathogens when fresh produce was washed with artificially contaminated water containing E. coli O157:H7 and S. typhimurium down to the predicted level of 1 to 10 cells/ml and L. monocytogenes at 1000 cells/ml. The ability to monitor several pathogens simultaneously will save time and increase our ability to assure food safety.  相似文献   

14.
目的 建立一种检验沙门氏菌、金黄色葡萄球菌、大肠埃希氏菌O157:H7的TaqMan探针三重荧光PCR方法.方法 针对沙门氏菌属特异性invA基因、金黄色葡萄球菌rpoB基因、大肠埃希氏菌O157:H7的rfbE基因设计引物与探针,建立三重荧光PCR体系,对引物与探针浓度及退火温度优化,并进行特异性和敏感性研究.结果 ...  相似文献   

15.
A continuous-flow apparatus was developed to measure thermal resistance (D- and z-values) of microorganisms at temperatures above 65 degrees C. This apparatus was designed to test whether vegetative microorganisms exhibited unusually high thermal resistance that prevented them from being completely eliminated at temperatures applicable to vacuum-steam-vacuum processes (116 to 157 degrees C). The apparatus was composed of a high-pressure liquid chromatography pump, a heating unit, and a cooling unit. It was designed to measure small D-values (<1 s). Three randomly selected organisms, Listeria monocytogenes, Salmonella Heidelberg, and Escherichia coli O157:H7 suspended in deionized water were tested in the continuous-flow apparatus at temperatures ranging from 60 to 80 degrees C. Studies showed that the D-values of these organisms ranged from 0.05 to 20 s. Heating at 80 degrees C was found to be basically the physical limit of the system. Experimental results showed that L. monocytogenes, Salmonella Heidelberg, and E. coli O157:H7 did not exhibit unusual heat resistance. The conditions used in the vacuum-steam-vacuum processes should have completely inactivated organisms such as L. monocytogenes, Salmonella Heidelberg, and E. coli O157:H7 if present on food surfaces. The complete destruction of bacteria during vacuum-steam-vacuum processes might not occur because the surface temperatures never reached those of the steam temperatures and because bacteria might be hidden beneath the surface and was thus never exposed to the destructive effects of the steam.  相似文献   

16.
The ability of Listeria monocytogenes and Escherichia coli O157:H7 inoculated by immersion (at 4.6 and 5.5 log CFU/ g, respectively) to survive on artichokes during various stages of preparation was determined. Peeling, cutting, and disinfecting operations (immersion in 50 ppm of a free chlorine solution at 4 degrees C for 5 min) reduced populations of L. monocytogenes and E. coli O157:H7 by only 1.6 and 0.8 log units, respectively. An organic acid rinse (0.02% citric acid and 0.2% ascorbic acid) was more effective than a tap water rinse in removing these pathogens. Given the possibility of both pathogens being present on artichokes at the packaging stage, their behavior during the storage of minimally processed artichokes was investigated. For this purpose, batches of artichokes inoculated with L. monocytogenes or E. coli O157:H7 (at 5.5 and 5.2 log CFU/g, respectively) were packaged in P-Plus film bags and stored at 4 degrees C for 16 days. During this period, the equilibrium atmosphere composition and natural background microflora (mesophiles, psychrotrophs, anaerobes, and fecal coliforms) were also analyzed. For the two studied pathogens, the inoculum did not have any effect on the final atmospheric composition (10% O2, 13% CO2) or on the survival of the natural background microflora of the artichokes. L. monocytogenes was able to survive during the entire storage period in the inoculated batches, while the E. coli O157:H7 level increased by 1.5 log units in the inoculated batch during the storage period. The modified atmosphere was unable to control the behavior of either pathogen.  相似文献   

17.
Time and temperature pasteurization conditions common in the Wisconsin cider industry were validated using a six-strain cocktail of Escherichia coli O157:H7 and acid-adapted E. coli O157:H7 in pH- and degrees Brix-adjusted apple cider. Strains employed were linked to outbreaks (ATCC 43894 and 43895, C7927, and USDA-FSIS-380-94) or strains engineered to contain the gene for green fluorescent protein (pGFP ATCC 43894 and pGFP ATCC 43889) for differential enumeration. Survival of Salmonella spp. (CDC 0778. CDC F2833, and CDC H0662) and Listeria monocytogenes (H0222, F8027, and F8369) was also evaluated. Inoculated cider of pH 3.3 or 4.1 and 11 or 14 degrees Brix was heated under conditions ranging from 60 degrees C for 14 s to 71.1 degrees C for 14 s. A 5-log reduction of nonadapted and acid-adapted E. coli O157:H7 was obtained at 68.1 degrees C for 14 s. Lower temperatures, or less time at 68.1 degrees C, did not ensure a 5-log reduction in E. coli O157:H7. A 5-log reduction was obtained at 65.6 degrees C for 14 s for Salmonella spp. L. monocytogenes survived 68.1 degrees C for 14 s, but survivors died in cider within 24 h at 4 degrees C. Laboratory results were validated with a surrogate E coli using a bench-top plate heat-exchange pasteurizer. Results were further validated using fresh unpasteurized commercial ciders. Consumer acceptance of cider pasteurized at 68.1 degrees C for 14 s (Wisconsin recommendations) and at 71.1 degrees C for 6 s (New York recommendations) was not significantly different. Hence, we conclude that 68.1 degrees C for 14 s is a validated treatment for ensuring adequate destruction of E. coli O157:H7, Salmonella spp., and L. monocytogenes in apple cider.  相似文献   

18.
The growth and persistence of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes on a diverse range of plant types over extended cultivation periods was studied. When introduced on the seed of carrot, cress, lettuce, radish, spinach and tomato all the pathogens became rapidly established shortly after germination, attaining cell densities of the order of 5.5-6.5 log cfu/g. In general, Es. coli O157:H7 and L. monocytogenes became established and persisted at significantly higher levels on seedlings (9 days post-germination) than Salmonella. Es. coli O157:H7 became internalized in cress, lettuce, radish and spinach seedlings but was not recovered within the tissues of mature plants. Internalization of Salmonella was also observed in lettuce and radish but not cress or spinach seedlings. In contrast, L. monocytogenes did not internalize within seedlings but did persist on the surface of plants throughout the cultivation period. Co-inoculation of isolates recovered from the rhizosphere of plants did not significantly affect the numbers or persistence of human pathogens. The only exception was with Enterobacter cloacae, which reduced Es. coli O157:H7 Ph1 and L. monocytogenes levels by ca. 1 log cfu/g on lettuce. With the bioluminescent phenotype of Es. coli O157:H7 Ph1, it was demonstrated that the human pathogen became established on the roots of growing plants. Scanning electron micrographs of root seedlings suggested that Es. coli O157:H7 Ph1 preferentially colonized the root junctions of seedlings. It is proposed that such colonization sites enhanced the persistence of Es. coli O157:H7 on plants and facilitated internalization within developing seedlings. The results suggest that the risk associated with internalized human pathogens in salad vegetables at harvest is low. Nevertheless, the introduction of human pathogens at an early stage of plant development could enhance their persistence in the rhizosphere. The implications of the study with regards to on-farm food safety initiatives are discussed.  相似文献   

19.
MR Choi  Q Liu  SY Lee  JH Jin  S Ryu  DH Kang 《Food microbiology》2012,32(1):191-195
This research was initiated to assess the efficacy of gaseous ozone for inactivation Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice. Juice samples with solids content of 18, 36, and 72 °Brix inoculated with a culture cocktail of three foodborne pathogens were treated with gaseous ozone at a flow rate of 3.0 L/min and an ozone generation rate of 0.10, 0.90, 3.51, and 5.57 g/h for 0.5, 1, 5, and 10 min, respectively. The inactivation kinetics of gaseous ozone on foodborne pathogens conformed to the Weibull model. The time required to achieve a 5 log reduction (t5d) was estimated using the parameters of the Weibull model. The t5d increased with increasing solids content of apple juice. The ozone generation rate did not impart a significant effect (p > 0.05) on t5d. Gaseous ozone is effective at inactivating foodborne pathogens in apple juice but the efficacy is dependent on the solids content of the juice sample.  相似文献   

20.
The heat resistance of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella enterica (serotypes Typhimurium, Enteritidis, Gaminara, Rubislaw, and Hartford), and Listeria monocytogenes was evaluated in single-strength apple. orange, and white grape juices adjusted to pH 3.9. The heat resistance increased significantly (P < 0.05) after acid adaptation. Salmonella had an overall lower heat resistance than the other pathogens. Acid-adapted E. coli O157:H7 presented the highest heat resistance in all juices at the temperatures tested, with lower z-values than Salmonella and L. monocytogenes. The heat resistance (D(60 degrees C)-values) of all three pathogens, assessed in tryptic soy broth adjusted to different pH values, increased above pH 4.0. From the results obtained in this study, one example of a treatment that will inactivate 5 logs of vegetative pathogens was calculated as 3 s at 71.1 degrees C (z-value of 5.3 degrees C). Normal processing conditions calculated for hot-filled, shelf-stable juices achieve a lethality in excess of 50,000 D for all three pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号