首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
试验研究了铁砷质量比、氧化钙用量、反应时间、氧化剂用量等因素对低质量浓度含砷废水处理的影响,结果表明:GCI-8具有强氧化性,有助于As的去除;在原水p H值为5~6,As质量浓度约为1.6 mg/L时,处理后As质量浓度与铁砷质量比、反应时间关系较大;p H值对砷酸铁和砷酸钙沉淀物的溶出有影响;在相同铁砷质量比为30的条件下,铁盐沉淀法反应30 min,处理后As质量浓度满足《地表水环境质量标准》Ⅲ类标准,而铁盐高级氧化沉淀法反应5 min,处理后As质量浓度满足《地表水环境质量标准》Ⅲ类标准;铁盐高级氧化沉淀法可以极大地提高反应效率,缩短反应时间。  相似文献   

2.
氧化-混凝法处理含砷选矿废水的试验研究   总被引:2,自引:0,他引:2  
以某钨矿含砷选矿废水为处理对象,针对常规铁盐混凝工艺除砷的不足,提出采用氧化-铁盐混凝法。氧化剂选用双氧水和次氯酸钠,研究探讨了两种氧化剂对混凝沉淀法除砷效果的影响。结果表明,当铁盐除砷的工艺条件:pH值7.55左右,三氯化铁投加量453.33 mg·L-1(Fe/As摩尔比=3.0),混凝反应时间25 min,PAM投加量40 mg·L-1固定时,双氧水氧化反应阶段的最佳工艺条件为:pH值5.50~7.50,氧化时间25 min,双氧水投加量950 mg·L-1,选矿含砷废水经该预氧化工艺处理后,再由铁盐沉淀法处理,出水砷浓度降至0.302 mg·L-1,砷去除率达到99.28%;次氯酸钠氧化反应阶段的最佳工艺条件为:pH值6.00~8.00,氧化时间25 min,次氯酸钠投加量1500 mg·L-1,选矿含砷废水经该预氧化工艺处理后,再由铁盐沉淀法处理,出水砷浓度为0.437 mg·L-1,砷去除率可达到99.0%。经比较分析得出双氧水为最佳氧化剂。  相似文献   

3.
氧化-铁盐混凝沉淀法处理钨冶炼含砷废水的试验研究   总被引:1,自引:0,他引:1  
钨冶炼生产实践中遇到的主要问题之一就是含砷废水的处理。研究采用氧化-铁盐混凝沉淀工艺处理赣南某钨冶炼废水。试验研究了氧化剂种类、氧化剂用量、铁盐种类、铁盐用量、p H值对砷去除效果的影响。结果表明:"双氧水+水合硫酸亚铁"除砷效果较好,当双氧水用量0.44 m L/L,氧化反应时间5~10 min,水合硫酸亚铁投入量1.48 g/L,混凝反应p H=9~10时,废水中砷的去除率达到99.0%,反应过后残留砷的浓度降至0.49 mg/L,达到《污水综合排放标准》(GB8978—1996)一级标准。  相似文献   

4.
某金精矿冶炼企业含氰尾矿中总氰化合物及砷含量较高,采用过氧化氢氧化—亚铁盐沉淀联合工艺对其进行无害化处理,并对试验条件进行了优化。最佳试验参数:除氰阶段为过氧化氢用量2. 0 mL/L,pH值6. 0~6. 5,反应时间2 h;除砷阶段为七水硫酸亚铁用量0. 50 g/L,过氧化氢用量1. 0 mL/L,pH值6. 0~6. 5,反应时间1 h。处理后的含氰尾矿压滤渣毒性浸出液中的总氰化合物和砷质量浓度均稳定低于HJ 943—2018 《黄金行业氰渣污染控制技术规范》尾矿库处置标准要求,实现尾矿库堆存。  相似文献   

5.
《湿法冶金》2021,40(4)
高砷锑烟灰的碱性氧压浸出液中,砷质量浓度在25 g/L以上,研究了采用硫酸-铁盐法去除砷。结果表明:铁盐用量为n(Fe)/n(As)=1.75,用硫酸调溶液pH=6,在60℃下反应1.5 h,砷脱除率在99.5%以上,除砷效果较好。  相似文献   

6.
针对攀枝花红格南矿区钒钛磁铁矿冶炼的钒渣焙烧后浸出液中含砷较高,传统工艺处理时得到的钒产品中砷含量高于国家标准的情况,采用铁盐法除砷,制备高纯的V_2O_5产品。考察了初始p H、温度、反应时间、w_(Fe)/w_(As)、静置沉淀p H等因素对除砷率和钒损的影响。试验结果表明,最佳工艺条件为:初始p H=3,温度40℃,w_(Fe)/w_(As)=4~5,反应时间40~50 min,然后加入Na OH调节p H至6,保温10 min,静置12 h。在此条件下,得到As的去除率大于85%,V的损失率小于5%。溶液中的As含量小于0.08 g/L,得到的V_2O_5(纯度98%)产品中As含量小于0.01%,符合行业标准YB/T 5304-2011。  相似文献   

7.
对碱浸脱砷反应后的废水进行脱砷研究。考察工艺流程、添加剂种类及用量、反应体系pH值、反应温度,反应时间对脱砷效果的影响。确定最佳工艺参数:氧化剂H2O2用量H2O2:As=5 (化学计量比)、氧化温度T=30℃、氧化时间15 min;采用铁盐(浓度为4. 4 g/L)控制溶液p H=11;沉淀剂CaO用量Ca/(As+V+W)=5∶1 (化学计量比)、沉淀温度T=85℃、沉淀时间30 min。此法对废水进行脱砷处理后As含量最低可达0. 45 mg/L,达到国家排放标准,脱砷废液可循环利用,脱砷残渣为直接堆置的无害残渣。  相似文献   

8.
采用Fenton预氧化-中和脱砷法对含砷含铁冶金废水进行净化处理,通过单因素试验分别研究了Fenton氧化剂用量、氧化时间对铁氧化率的影响,以及中和脱砷过程药剂用量、反应时间、搅拌速度和反应温度对脱砷效果的影响,并对最优条件的脱砷后液和中和渣与企业工艺参数进行对比。结果表明:向废水中加入5 mL/L过氧化氢(30%)预氧化5 min后,废水中Fe2+浓度从2.23 g/L降至0.01 g/L,Fe2+氧化率为99.55%。最优脱砷条件为:石灰加入量15 g/L、搅拌速率300 r/min、温度30℃、反应时间50 min,脱砷率为99.9%。中和渣毒性浸出试验结果为0.32 mg/L,满足危险废物浸出毒性鉴别标准(GB 5085.3—2007),实现砷无害化处理。  相似文献   

9.
针对某黄金生产企业含砷氰化尾矿污染特征,开展了搅拌洗涤法、臭氧氧化法、酸化溶砷法、铁盐固砷法等多种无害化方法联合处理试验研究,旨在将该含砷氰化尾矿处理至满足氰渣规范回填利用污染控制要求。结果表明:该含砷氰化尾矿回填利用污染控制技术工艺为压滤调浆搅拌洗涤+臭氧氧化+酸化溶砷+铁盐固砷,最佳参数为原矿浆压滤后加水调浆,矿浆浓度40%,臭氧投加量0.66 g/L,酸化溶砷pH值3、曝气量0.1 m3/h、反应时间2 h,铁盐固砷七水合硫酸亚铁投加量20.0 g/L、反应时间1 h。研究结果为该黄金生产企业含砷氰化尾矿回填利用提供了技术支撑。  相似文献   

10.
本文采用铁盐除砷的方法去除舍锌烟灰酸性浸出液中的砷、铁杂质,考察了铁砷摩尔比、反应pH值、反应时间、反应温度对锌的损失率和砷去除率的影响。试验结果表明:在铁砷摩尔比为2:1、反应pH值为5.0、反应时间为90 min、反应温度为70℃的条件下进行二段除砷,砷的去除率可达99.5%,锌的损失率仅有2.24%。溶液中砷和铁的含量可降低至1.5 mg/L和0.5 mg/L。  相似文献   

11.
以甘肃某金矿经细菌氧化提金后产生的高砷、高铁强酸性细菌氧化液为研究对象,并选择CaO作为沉淀剂进行中和除砷实验,考察pH值、温度、搅拌速度和反应时间等对中和除砷的影响,通过单因素实验确定最佳除砷条件,并探究在模拟自然环境下各因素对砷钙渣稳定性的影响。除砷实验结果表明:在pH=4~5、搅拌速度适宜及常温下反应25 min时,除砷率可达99.99%,实现了废水净化;砷钙渣定量分析结果表明:渣中As、Fe质量分数分别为4.04%和19.79%;模拟自然环境下砷钙渣稳定性影响实验结果表明:当环境pH≤1时,砷钙渣中的砷被溶出了5 mg/L,超过工业废水排放标准。通过试验发现,选择CaO作为沉淀剂对细菌氧化液进行中和除砷,可以实现废水净化,并且当含砷渣所处环境pH≥1时可以稳定存放。  相似文献   

12.
化学沉淀法处理含砷废水,产物沉砷渣通常不稳定,易导致砷泄露,对环境造成严重的危害。采用沉砷率高、固砷渣稳定的低温常压臭葱石(FeAsO4·2H2O)沉砷法进行除砷,并研究了初始pH、Fe/As摩尔比、Fe2(SO4)3滴加速率对As、Fe去除率,FeAsO4·2H2O结晶度,形貌和浸出毒性的影响。结果表明:初始pH和Fe/As摩尔比的升高有利于沉砷率的提高,但会导致沉砷渣中FeAsO4·2H2O结晶度和含量下降。提高Fe2(SO4)3滴加速率有利于反应效率,但不利于FeAsO4·2H2O的纯度。在初始pH为1.5,Fe/As摩尔比为1.5,Fe2(SO4)3滴加速率为40 mL/h以及滴加时间为1.125 h的条件下,...  相似文献   

13.
考察了双氧水的加入方式和加入量、反应温度、氧化时间等对砷碱渣浸出液氧化脱锑效果的影响,以及电位与脱锑率的关系。结果表明,最佳工艺参数为:常温、反应时间60min、双氧水加入量为原液体积的0.6%(等价于每克锑17.65 mL)、双氧水进料时间控制在反应的前1/3时间段、反应终点电位-550~-450mV。脱锑率可达到95%以上,氧化后得到的锑酸钠纯度可达到91.83%,达到市售普通锑酸钠的品质要求。该技术突破了价态调控还原浸出液中锑的关键技术。  相似文献   

14.
根据高砷高硫难处理金精矿的工艺矿物学特征,提出了二段焙烧-加压酸浸联合预处理工艺,重点讨论了该工艺对砷、硫和铁脱除效果的影响。研究结果表明,难处理金精矿经一段焙烧后,在焙烧温度700 ℃、焙烧时间120 min条件下,再经二段焙烧,所得焙砂中As含量仅为0.51%,S含量为0.34%,并且经过加压酸浸后As、S和Fe的脱除率都在95%以上,达到了很好的效果。  相似文献   

15.
通过铁和铝电极材料的对比,选择铝极板作为电极材料,研究极板间距、电流密度、反应时间及废水pH对电絮凝法处理酸性矿山废水的影响。结果表明,当废水中Fe2+、Cu2+和Zn2+的初始质量浓度分别为295.1、18.3、8.2 mg/L时,极板间距10 mm、电流密度20 mA/cm2、废水pH=5.0的条件下,反应40 min后,Fe2+、Cu2+和Zn2+的去除效率分别达到了90.8%、96.5%和96.8%,反应后废水的pH可达到6.7。在单因素试验的基础上,以电絮凝中Fe2+、Cu2+和Zn2+的去除率的最大值,以及出水pH最大值为评价指标,通过响应曲面法建立模型分析拟合得出优化条件并重复3次试验加以验证。结果表明,在电流密度21 mA/cm2、反应时间35 min、极板间距10 mm时,对Fe2+、Cu2+和Zn2+的平均去除率分别为87.02%、93.91%和94.63%,平均pH为6.13,该模型能够较好预测电絮凝对酸性矿山废水的处理效果。絮凝体SEM-EDS检测分析证明Fe、Cu、Zn等重金属可有效从废水中去除。  相似文献   

16.
A novel approach toward the removal of iron and nonferrous metals from typical South African acid mine drainage (AMD) waters was investigated. The approach involves the controlled oxidation of ferrous-containing AMD water at ambient temperatures in the presence of magnetite seed. The resulting oxidation product is the ferrite (M123+M22+O4) magnetite (Fe3O4) which has the capacity for nonferrous metal removal by cation substitution. M?ssbauer spectroscopy, x-ray diffraction, and scanning electron microscopy analyses confirmed the precipitant to be magnetite. The effects of four parameters are reported: airflow rate, seed concentration, pH, and temperature. All of these independently affect the % ferrous in the final precipitant. In all experiments, the airflow rate was found to be rate limiting with respect to the kinetics of ferrous removal. The retention time for the complete removal of 1,200 mg Fe/L was 0.3–1.6 h (corresponding to airflow rates of 0.05–0.6 L/min, respectively). The precipitant settled well and showed complete stability at pH 5. The total iron concentration in the raw effluent was always less than 1 mg/L, representing an iron removal efficiency of greater than 99.9%.  相似文献   

17.
铜冶炼烟气制酸产生的废酸中砷质量浓度3.0~10.0 g/L、铜质量浓度0.1~3.5 g/L,酸度60~120 g/L,试验考察了不同硫化剂对砷的去除效果,确定采用铁锍进行铜冶炼废酸处理,并对其影响因素进行优化,获得了最佳处理工艺。试验结果表明:在铁锍破碎细磨至-74μm占80%以上、用量为沉铜、砷理论用量的1.2倍,反应时间2 h条件下,处理后的铜冶炼废酸中砷质量浓度降至低于0.03 g/L,砷去除率可达到99.5%以上,且反应速率可控,不引入其他杂质,满足铜冶炼废酸除砷的要求。  相似文献   

18.
贵州某矿山的矿坑水中含有毒物质砷和剧毒物质铊,通过对生物法、吸附法和化学沉淀法3种处理方法进行小型试验,最终确定化学氧化—混凝沉淀除砷除铊+化学还原法除活性氯的处理工艺。工业运行结果表明,As和Tl的去除率均大于98.5%,出水As、Tl、活性氯的质量浓度符合GB 3838—2002《地表水环境质量标准》规定的Ⅲ类水质标准限值,运行成本约1.81元/m~3。  相似文献   

19.
利用DSD酸生产过程产生的铁泥,研制出既能用作常规冶金原料,又能用于处理DSD酸氧化废水的水处理用海绵铁.研究表明:在配碳量27%、反应温度1160℃、反应时间16min的情况下,以铁泥为原料制备的常规海绵铁的金属化率可达90%以上;用于处理DSD酸氧化废水的海绵铁适宜配碳量为29%,用制备出的海绵铁处理DSD酸氧化废水,在pH值3~5、反应时间40min时,出水的CODCr去除率可达68%、色度的去除率达90%、可生化性指标BOD/COD提高到0.425.海绵铁中所含C,Fe3C和其他一些杂质元素,这些元素能与铁在水中形成无数微小原电池产生大量[H],[OH]和[Fe2+],从而氧化还原废水中的有机物,达到污染物降解和提高废水可生化性的目的.海绵铁的微孔结构非常发达,使其具有比表面积大、活性高的特点.是一种替代常规铁屑的理想材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号