首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用盐酸-硝酸-高氯酸混合酸消解样品,盐酸为介质,电感耦合等离子体发射光谱法测定金精矿中铜、铅、锌、镉。方法检出限分别为Cu 0.002 2μg/m L、Pb 0.014 0μg/m L、Zn 0.004 2μg/m L、Cd 0.003 5μg/m L,加入标准物质回收率分别为Cu 97.67%~102.25%、Pb 96.97%~105.07%、Zn 97.00%~105.50%、Cd 95.00%~105.00%,测定结果的相对标准偏差分别为Cu 3.03%~3.79%、Pb 1.24%~4.52%、Zn 1.62%~3.91%、Cd 1.94%~4.16%。该方法操作简单、准确可靠,满足实验室检测需求,适合大批量样品的测定。  相似文献   

2.
采用盐酸-硝酸-氢氟酸并采用微波消解处理样品,高氯酸冒烟至尽干,加盐酸溶解盐类,选择Pb 220.353nm、Zn 206.200nm、Cu 327.393/Cu 324.752nm、As 193.696nm、Sb 206.836nm、Bi 190.171nm、Cd 214.440nm/Cd 226.502nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铅、锌、铜、砷、锑、铋、镉,从而建立了银精矿中铅、锌、铜、砷、锑、铋、镉等杂质元素的分析方法。铅、锌、锑在0.50%~5.00%,铜、铋在0.10%~5.00%,砷在0.10%~3.00%,镉在0.050%~0.50%范围内校准曲线呈线性,线性相关系数r均大于0.9999。方法中各元素的检出限为0.001%~0.014%。实验方法用于测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,结果的相对标准偏差(RSD,n=11)为0.74%~2.9%,并与相应的国标方法测定值相吻合(其中铅和锌采用火焰原子吸收光谱法(YS/T 445.9—2001),铜采用火焰原子吸收光谱法(YS/T 445.2—2001),砷和铋采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),锑参照采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),镉采用原子吸收光谱法(YS/T 445.8—2001))。按照实验方法测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,并进行加标回收试验,回收率为96%~105%。  相似文献   

3.
建立了火焰原子吸收光谱法测定银精矿中低含量铜的测定方法。利用盐酸、硝酸分解试样,用氢氟酸除去试样中的SiO_2,用高氯酸除去试样中的C,用盐酸-氢溴酸混合酸(1+2)除去试样中的Sb,试样分解完全,用二乙烯三胺络合高含量的银,以10%盐酸作介质,溶液澄清,用火焰原子吸收光谱进行测定。方法检出限为0.0104μg/m L,样品加标回收率为98.4%-104.9%,样品结果的相对标准偏差为0.72%-2.55%。该方法可作为铜含量为0.05%-2.0%的银精矿中铜测定的分析方法。  相似文献   

4.
辽宁某氰化尾渣金品位2.01 g/t,银品位36.23 g/t,铜、铅、锌品位分别为0.33%、1.91%、3.01%。针对该氰化尾渣进行铜铅锌混合浮选试验及优先选铅—尾矿选锌浮选试验。铜铅锌混合浮选试验可获得金品位13.72 g/t、银品位281.70 g/t、铜品位3.63%、铅品位16.01%、锌品位36.92%,金、银、铜、铅、锌回收率分别为50.09%、57.22%、80.69%、61.33%、90.88%的混合精矿;优先选铅—尾矿选锌浮选试验可获得铅品位48.95%、铅回收率52.29%的铅精矿,锌品位43.21%、锌回收率89.45%的锌精矿,铅精矿中金、银、铜品位分别为54.02 g/t、891.42 g/t、5.92%,锌精矿中金、银、铜品位分别为2.43 g/t、134.79 g/t、2.19%,总金、总银、总铜回收率分别为62.39%、73.43%、77.76%。选别指标良好,为该类氰化尾渣资源的综合回收利用提供了参考依据。  相似文献   

5.
林园 《冶金分析》2018,38(3):41-45
足金样品的检测有着广泛市场需求,但常用的火焰原子吸收光谱法(FAAS)、电感耦合等离子体原子发射光谱法(ICP-AES)对于铅、镉质量分数均小于0.0001%的足金样品无能为力,而电感耦合等离子体质谱法(ICP-MS)标准加入校正-内标法不能用于银、铜含量高(质量分数均大于0.001%)的足金样品检测。采用王水溶解样品后直接用乙酸乙酯萃取,以2%~5%(体积分数)硝酸为测定介质,建立了ICP-MS测定纯度为99.9%~99.999%足金中铜、银、铅、镉4种主要杂质元素的方法。干扰试验表明,足金中高含量银对测定铜、铅、镉没有干扰。在选定的实验条件下,各元素校准曲线的相关系数不小于0.9994,方法测定下限为0.01~0.19μg/g。将实验方法应用于足金实际样品分析,结果的相对标准偏差(RSD,n=6)为1.3%~2.6%,加标回收率为99%~105%。采用实验方法对3种纯度(99.9%、99.99%、99.999%)足金样品中的铜、银、铅和镉进行测定,测得结果分别与原子吸收光谱法(AAS)或ICP-MS标准加入校正-内标法基本一致。方法可实现纯度为99.9%~99.999%足金中银、铜、铅、镉的测定。  相似文献   

6.
采用盐酸和硝酸溶解样品,高氯酸冒烟除碳,20%(V/V)酸介质中,采用As 188.980 nm、Cu 327.395 nm、Zn 328.233 nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铅精矿中砷、铜、锌。结果表明,基体效应对砷、铜、锌的测定结果没有显著影响,使用无铅基体匹配的方法绘制校准曲线。各元素校准曲线的线性相关系数均不小于0.999 8;方法中砷、铜、锌的检出限分别为0.032 7、0.024 0、0.130 mg/L。按照实验方法测定铅精矿标准样品中砷、铜、锌,结果的相对标准偏差(RSD,n=7)为0.64%~1.1%;测定值与认定值一致,并且与碱熔-电感耦合等离子体原子发射光谱法的测定值也相吻合。  相似文献   

7.
魏巍 《冶金分析》2018,38(1):64-69
采用硝酸、盐酸、高氯酸分解样品,加入盐酸与银反应形成氯化银沉淀后过滤,采用铅试金重量法对沉淀中银量进行了测定,并扣除了钯产生的干扰,同时采用原子吸收光谱法(AAS)对滤液中的银量进行了测定,将沉淀与滤液中的银量相加后除以样品量得到样品中银的含量,实现了铅试金重量法联合原子吸收光谱法对银钯精矿中银的测定。考虑到在沉淀形成的过程中,氯化银沉淀对铂和钯有严重的吸附作用,因此考察了铂和钯对沉淀中银量测定的影响。试验表明,采用铅试金法对沉淀中贵金属进行捕集后,贵金属合粒中的铂对银测定的干扰可忽略不计,但钯的干扰不可忽略。实验采取用10mL硝酸(1+1)低温溶解贵金属合粒,以原子吸收光谱法测定合粒溶液中钯量,从铅试金重量法所得结果中扣除合粒中钯量的方法消除了沉淀中钯对测定的干扰。干扰试验表明,滤液中的主要共存元素钯、铜、铋、金、铂对样品中银测定的干扰可忽略不计。按照实验方法,对钯银精矿样品中银平行测定11次,相对标准偏差(RSD)为0.028%~0.059%,同时加入高纯硝酸银进行加标回收试验,回收率为98%~102%。将实验方法应用于银钯精矿样品中银的测定,其测定结果与碘化钾电位滴定法基本一致。  相似文献   

8.
传统火焰原子吸收光谱法测定Ag、Cd,样品需单独处理,耗时且成本高。建立了火焰原子吸收光谱法连续测定多金属矿石中银、镉的方法,样品经盐酸、硝酸(氟化氢铵)分解,盐酸提取可溶性盐,在硫脲介质中火焰原子吸收光谱仪连续测定Ag、Cd。方法检出限分别为Ag 0.005 4μg/m L、Cd 0.003 2μg/m L,Ag、Cd测定结果的相对标准偏差分别为0.7%~2.8%、0.4%~2.4%,加入标准物质回收率分别为97.5%~103.6%、96.4%~104.0%。该方法酸的用量少,环境污染程度低,准确度和精密度良好。  相似文献   

9.
建立了用电感耦合等离子体法快速测定铅精矿中的铜、铋、锌、砷、铝、镁和锑含量的分析方法。试样用王水溶解,在稀硝酸和酒石酸介质中,确定了最佳工作条件,选择了各元素的最佳分析谱线。试验结果表明,方法中各元素的线性相关系数均在0.999以上,方法检出限0.05μg/m L,各元素的相对标准偏差在0.441%~8.35%之间,加标回收率在94.8%~107.9%。运用此方法同时测定铅精矿样品中的铜、铋、锌、砷、铝、镁和锑含量,结果与理论值一致。  相似文献   

10.
针对内蒙古某低品位铅锌矿石进行了可选性选矿试验研究。最终通过优先选铅-锌硫混浮再分离的工艺流程进行闭路试验,获得铅精矿、锌精矿、硫精矿产品,铅精矿含铅45.18%、锌4.36%、金22.91g/t、银1401.5g/t,铅、金、银的回收率分别为83.52%、53.67%、70.09%;锌精矿含锌42.03%、铅0.614%、银51.8g/t,锌、银的回收率分别为85.67%、6.06%;硫精矿含硫41.81%,硫回收率56.79%,从而为该类型矿石的资源回收利用提供了依据。  相似文献   

11.
采用HF-HNO3-HClO4混酸消化样品,HNO3溶解盐类,火焰原子吸收光谱法直接测定试液中钙、铜、铁、锰的含量。对共存离子的干扰情况进行了考察,发现大量的Si对测定有干扰,在处理样品时通过生成SiF4除去;磷、铝、钛等元素对钙的化学干扰,通过加入释放剂SrCl2消除。背景吸收使用氘灯扣除。采用标准曲线法测定,Ca、Cu、Fe、Mn的校准曲线的线性范围分别为0.00~20.00μg/mL、0.00~6.00μg/mL、0.00~10.00μg/mL、0.00~6.00μg/mL,检出限分别为0.000 3μg/mL、0.001 3μg/mL、0.002 6μg/mL、0.006 9μg/mL。方法用于云冈石窟风化岩石中钙、铜、铁、锰的测定,相对标准偏差分别为2.8%、3.0%、1.4%、2.9%,加标回收率在96%~110%之间。  相似文献   

12.
邓冬莉  李芬  向敏婕  吴祎  邓灏 《冶金分析》2016,36(12):26-31
油类样品易燃易爆,在对其中较低含量金属元素进行分析时极易引起被测元素损失且一般进样系统无法对其直接测定,因此测定时样品的前处理过程非常重要。实验取100 mL航空煤油样品于500 mL分液漏斗中,加入2.0 mL碘-二甲苯溶液和15 mL硝酸(1+9)重复萃取2次,将两次萃取液合并后再用10 mL水萃取一次,萃取液浓缩后采用火焰原子吸收光谱法(FAAS)进行测定,建立了测定航空煤油中铅、锰、镁、锌和铜5种元素含量的方法。结果表明:铅、锰、镁、锌和铜5种金属元素校准曲线的相关系数均大于0.999 0,方法检出限为0.009~0.256 μg/mL。采用实验方法对航空煤油样品进行测定,测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD,n=9)为0.86%~5.4%。将实验方法应用于4个不同产地的航空煤油样品中铅、锰、镁、锌和铜的测定,各个元素的加标回收率均在96%~103%之间。  相似文献   

13.
邵坤  范建雄  李刚  赵改红 《冶金分析》2021,41(10):49-56
采用铅试金法富集高镍锍中金、铂和钯时,因高镍锍中镍、铜含量较高,严重影响着铅试金的熔炼富集和灰吹效果。实验采用盐酸溶解分离高镍锍中镍、铜等基体组分,得到的含贵金属残渣经包铅灰吹法进一步富集与分离,最终实现了铅试金-电感耦合等离子体原子发射光谱法(ICP-AES)对高镍锍中金、铂和钯的准确测定。实验探讨了盐酸用量、铅箔用量、灰皿类型、灰吹损失、银加入量、分析谱线等因素对测定结果的影响。结果表明,对于5 g高镍锍样品,80 mL盐酸几乎可以将镍、铜等基体组分溶解完全;残渣经0.45 μm滤膜收集后,加入5 mg银并包于6.0 g铅箔中,在950 ℃的镁砂灰皿中灰吹,铅及少量贱金属硫化物被氧化分离而金、铂和钯几乎不损失,形成的银合粒经混合酸分解后,银以氯化银沉淀的形式分离不干扰测定;在王水(1+9)介质中,于分析线Au 267.595 nm、Pt 265.945 nm、Pd 340.458 nm处,采用ICP-AES测定金、铂和钯。各元素校准曲线的相关系数均在0.999以上;方法检出限为0.067 μg/g(Au)、0.085 μg/g(Pt)、0.107 μg/g(Pd)。方法用于测定高镍锍中金、铂和钯,结果的相对标准偏差(RSD,n=7)为2.8%~5.9%。测定结果与行业标准方法(YS/T 252.8—2020)对照测定结果基本吻合。  相似文献   

14.
在电炉上将样品碳化至无烟后将铂坩埚置于高温炉内于750 ℃下灼烧约6 h进行灰化,采用四硼酸锂(Li2B4O7)熔融、5%硝酸溶解,以5 mL 100 mg/mL镧溶液为释放剂,建立了火焰原子吸收光谱法(FAAS)测定针状石油焦样品中钾、铅、镁、锌、铜、锰的方法。实验表明,针状石油焦样品中其他元素不干扰待测元素的测定,待测元素间无相互干扰。在选定的最佳仪器条件下,钾、铅、镁、锌、铜、锰的检出限分别为0.008、0.030、0.001、0.005、0.008、0.007 μg/mL。采用实验方法对2批针状石油焦样品进行测定,结果与电感耦合等离子体发射光谱法(ICP-AES)基本一致,相对标准偏差(n=10)为0.63%~3.4%,加标回收率在98%~104%之间。  相似文献   

15.
采用盐酸溶解样品,选择Co 240.72nm、Cu 324.75nm、Zn 213.86nm、Fe 248.33nm、Ca 422.67nm、Mg 202.58nm作为分析谱线,钴、铜、锌、铁选择3个像素点,钙、镁选择9个像素点,建立了连续光源原子吸收光谱法(CS-AAS)同时测定氧化镍中的钴、铜、锌、铁、钙、镁的方法。实验表明:在100mL测定液中加入2mL 200g/L氯化锶溶液,可消除测定介质(体积分数为2%的盐酸)对待测元素的影响;基体镍对测定的干扰可忽略。在优化的实验条件下,钴、铜、锌、铁、钙、镁的校准曲线相关系数均不低于0.999 0,且其方法检出限在0.002~0.092μg/mL之间。按照实验方法对氧化镍样品中钴、铜、锌、铁、钙、镁分别平行测定11次,钙和镁的测定值在0.1%~0.4%之间,其对应的相对标准偏差(RSD)不大于2%;钴、铜、锌、铁的测定值在0.003%~0.04%之间,其对应的相对标准偏差均小于10%。将实验方法应用于电真空镍光谱标准样品(该标样为氧化镍状态)中上述各元素的测定,结果与认定值基本一致。  相似文献   

16.
样品经盐酸溶解、阳离子交换树脂分离并将试液蒸发浓缩后,用石墨炉原子吸收光谱法测定了高纯铟中的痕量铅。探讨了溶样方法、离子交换分离和测定铅的条件。结果表明:用8 mL盐酸将1 g样品溶解,以0.5 mol/L 盐酸作为淋洗液进行离子交换可把绝大部分铟基体及样品中痕量的银、砷、镉、硅分离除去,随后用2.0 mol/L 盐酸可洗脱铅。干扰试验表明,铝、铜、铁、镁、镍、锡、铊、锌与小于10 μg的铟虽然不能与铅分离,但对测定无影响。当称样量为1 g,定容体积为1.0 mL,进样量为50 μL时,方法线性范围为0.5~4.0 ng/mL,测定下限为0.000 6 μg/g,比行业标准方法 YS/T 230.1-1994的0.1 μg/g低3个数量级。方法用于实际样品分析,结果与电感耦合等离子体质谱法(ICP-MS)相符,相对标准偏差(RSD,n=8)在1.1%~19.7%之间,加标回收率为92%~120%。  相似文献   

17.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

18.
ICP—AES法测定锌铝合金中的微量镧铈   总被引:1,自引:1,他引:0  
采用电感耦合等离子体原子发射光谱(简称ICP—AES)法同时测定锌铝合金中的镧、铈元素。对样品溶解条件及影响其光谱测定的各种因素进行了研究,确定了试验的最佳测定条件。结果表明,La的检出限为0.0011μg/mL,Ce的检出限为0.013μg/mL,回收率97.0%~104.0%,相对标准偏差(RSD)小于1.00%。方法中La的测定范围0.001%~0.5%,Ce的测定范围0.005%~0.5%。该方法简便、快速、准确,用于锌铝合金中La、Ce的测定,结果满意。  相似文献   

19.
赵琎  胡建春 《冶金分析》2015,35(6):31-34
采用10 mL硝酸(1+1)低温加热至沸溶解0.100 0 g试样,在优化仪器参数的基础上,通过选择合适的同位素以避免质谱干扰和采用标准加入法绘制校准曲线以消除基体效应,建立了电感耦合等离子体质谱法(ICP-MS)测定高纯镍板中砷、锡、锑、铅、铋的方法。各元素校准曲线的相关系数为0.999 2~0.999 9,方法检出限为0.009~0.047 μg/g。方法应用于高纯镍板实际样品分析,测得结果的相对标准偏差(RSD, n=9)为2.4%~5.4%,加标回收率为95%~106%。方法测定高纯镍板实际样品的结果与原子吸收光谱法(AAS)相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号