首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is presented to calculate the rate of crack advance in the stepwise decohesion process which can result from the stress-induced penetration of a surface-adsorbed element into a solid, usually along grain boundaries. We call this process dynamic embrittlement. The model employs a diffusion equation containing both the usual random-mixing term and a term reflecting the work done by a tensile stress when surface atoms diffuse inward. Given the diffusion constant of the surface species and the stress profile at the crack tip, the concentration build-up ahead of the crack as a function of time can be calculated. This can be combined with an empirical relationship between the interfacial concentration of the surface species and the stress to cause decohesion to give the crack-growth rate. This model is applied to the case of sulfur-induced cracking of an alloy steel in the process known as stress-relief cracking.  相似文献   

2.
《Acta Metallurgica》1986,34(9):1721-1735
By means of fracture mechanics analyses, acoustic emission techniques, and fracture surface analyses by scanning Auger microscopy and X-rays, it was determined how segregated phosphorus, yield strength and grain size affect the equilibrium and growth characteristics of hydrogen-induced intergranular cracking in high strength steels. The effect of yield strength on the threshold stress intensity was found to be greater than those of phosphorus segregation and grain size. The intergranular phosphorus segregation greatly accelerated the growth rate of hydrogen-induced intergranular cracking and caused a large number of acoustic signals to be emitted during the crack growth. The crack growth rate increased in a steel with segregated phosphorus and slightly decreased in high purity steels, where only occasional acoustic emissions were measured during the cracking process, by increasing grain size. Fracture surface analyses indicated more featureless intergranular fracture facets and higher levels of residual strain in the lattice adjacent to the fracture surface in the phosphorus-doped steel than in the high purity steels. These results suggest that while in steels with segregated impurities the macrocrack tends to grow by discretely rapid formation of intergranular microcracking which gives rise to dislocation emissions at the growing crack tip, in high purity steels slow growth of intergranular microcracking proceeds which is accompanied by either the absence or substantial mitigation of dislocation generation at the crack tip.  相似文献   

3.
《Acta Metallurgica》1986,34(5):883-889
A steady state model of hydrogen-induced intergranular crack growth has been developed. It is assumed that the steady state growth of an intergranular crack, screened by dislocations, is controlled by the grain boundary and crack surface diffusion processes of hydrogen. A series of second-order differential equations controlling the diffusion processes of hydrogen in the intergranular crack regions is solved numerically to determine the hydrogen distribution along a steadily moving crack and thereby the change of the ideal work of fracture. The relationship of the stress intensity required for the crack growth to the crack velocity is established as a function of several values of the grain boundary and crack surface diffusivities, the crack length, and the grain size. It is found that while the susceptibility to hydrogen-induced intergranular crack growth increases with increasing hydrogen diffusivities, it decreases with increasing crack length and grain size. The effect of grain size on the growth characteristics of hydrogen-induced intergranular cracking are discussed in terms of the direction change of the hydrogen flux along the moving crack.  相似文献   

4.
A theory of creep crack growth has been developed with the presumption that the crack growth occurs by the diffusion of vacancies along the grain boundaries. This is consistent with many experimental results that show that creep fracture is generally of intergranular type and the activation energies for crack growth rates fall within the range of grain boundary diffusion energies. The theory is based on the concept that creep crack growth results from a balance of two competing processes-the diffusion of point defects that contributes to the growth and the creep deformation process that retards the growth and causes even its arrest. The present analysis shows that crack growth via grain boundary diffusion occurs within some temperature range. The upper limiting temperature is determined by the bulk diffusion process which disperses the vacancies, that are diffusing to the crack tip, to the plastic zone ahead of the crack front. The lower temperature limit is set by the fact that the grain boundary diffusion rates decrease with the decrease in temperature and thus large stress intensities approaching the fracture toughness value are required to accomplish crack growth by the grain boundary diffusion. Outside these limits creep crack growth occurs via deformation which is significantly slower than growth by the grain boundary diffusion process. The importance of the present analysis rests on the fact that service conditions for many high temperature structural materials fall within the regime wherein creep crack growth occurs via grain boundary diffusion.  相似文献   

5.
The diffusive growth of both two dimensional and axisymmetric cavities initially having equilibrium shapes and located on grain boundaries loaded in tension is studied using finite difference techniques. The shape evolution and growth kinetics of individual cavities as well as the time required for adjacent cavities to grow together is studied as a function of applied stress and the ratio of grain boundary to surface diffusivity. A key feature of this treatment is that the diffusional processes in the grain boundary and on the cavity surface are coupled by boundary conditions at the tip of the cavity. When surface diffusion is much slower than grain boundary diffusion, the cavities become crack-like during growth, and the fracture time varies reciprocally with the third power of the applied stress. When grain boundary diffusion is the slower process, the cavities remain rounded during growth, and the fracture time varies reciprocally with the first power of the stress. The transition between these limiting kinds of behavior is described and the results are compared with previous treatments of these problems.  相似文献   

6.
Fitness-for-service evaluations of engineered components that are subject to environment assisted cracking (EAC) often require analyses of potentially large crack extensions through regions of variable stress intensity. However, there are few EAC data and models that directly address the effects of variable stress intensity factor on EAC crack growth. The model developed here is used to evaluate stress corrosion cracking (SCC) data that were obtained on a high-strength beta-titanium alloy under conditions of variable crack mouth opening displacement (CMOD) rate. SCC of this Ti alloy in ambient temperature, near-neutral NaCl aqueous solution is thought to be due to hydrogen environment assisted cracking (HEAC). As the model equations developed here do not admit to a closed form solution for crack velocity as a function of applied stress intensity factor, K, a semiquantitative graphical solution is used to rationalize the crack growth data. The analyses support a previous suggestion that the observed crack growth rate behavior can be attributed to the effect of crack tip strain rate on rates of mechanical disruption and repair of an otherwise protective crack tip oxide film. Model elements introduced here to HEAC modeling include (1) an expression relating corrosion-active surface area to crack tip strain rate and repassivation rate, (2) an expression relating the critical grain boundary hydrogen to the applied stress intensity factor, and (3) an expression relating CTSR to both applied and crack advance strain rate components. Intergranular crack advance is modeled assuming diffusive segregation of corrosion-generated hydrogen to grain boundary trap sites causing embrittlement of the fracture process zone (FPZ). The model equations developed here provide a quantitative basis for understanding the physical significance of K-variation effects and, with additional development, will provide an engineering tool for analysis of crack growth in a variable K field.  相似文献   

7.
8.
The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.  相似文献   

9.
The crack initiation site and the corresponding incubation time were determined as a function of notch radius in 4340 steel for both internally and externally supplied hydrogen. The source of hydrogen was found to affect both the crack nucleation site and the incubation time. Hydrogen cracking in cathodically charged 4340 steel initiated near the elastic-plastic boundary with incubation times which exhibited a linear dependence on notch radius. Hydrogen cracking in an aqueous solution initiated near the notch surface with incubation times which were relatively independent of notch radius. Short time diffusional flow models which include a stress dependent critical hydrogen concentration were found to predict incubation times reasonably for internally supplied hydrogen. Cherepanov's solution for the diffusion at the tip of a semi-infinite linear slit when applied in the context of a finite notch root radii problem was found to predict incubation times adequately for externally supplied hydrogen.  相似文献   

10.
Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.  相似文献   

11.
采用阴极充H、恒载荷拉伸和电化学H渗透等试验方法,研究了超高强度钢22MnB5Nb的H扩散行为及氢致滞后开裂性能,并与常用热冲压钢22MnB5进行了对比。结果表明,H在22MnB5Nb钢中的扩散系数为3.02×10-7 cm2/s,显著低于22MnB5钢;与22MnB5钢相比,22MnB5Nb钢具有较好的耐氢致滞后开裂性能;这是由于22MnB5Nb钢晶粒较细小,增加了晶界的有效面积,使H陷阱分布更均匀,进而抑制H向裂纹尖端扩展,避免了局部H的富集。  相似文献   

12.
This paper reports a study of the effects of phosphorus, tin, and molybdenum on the caustic stress corrosion cracking susceptibility of NiCrMoV rotor steels. Constant load tests were performed on these steels in 9M NaOH at 98 ± 1 °C at a controlled potential of either -800 mVHg/Hgo or -400 mVHg/Hgo. Times to failure were measured. The results show that at a potential of -400 mVHg/Hgo the segregation of phosphorus to grain boundaries lowers the resistance of these steels to caustic stress corrosion cracking. When molybdenum is removed from a steel that has phosphorus segregated to the grain boundaries, the steel’s resistance to stress corrosion cracking is improved. High purity alloys, both with and without molybdenum, show very good resistance to caustic cracking at this potential. At-800 mVHg/Hgo segregated phophorus has no effect; only molybdenum additions lower the resistance of the steel to caustic stress corrosion cracking. Segregated tin has little effect at either potential. Metallographic examination shows that one explanation for these results is that molybdenum and phosphorus, probably as anions precipitated from solution, aid in passivating the sides of the crack and thus help keep the crack tip sharp. This sharpness will increase the speed with which the crack will propagate through the sample. Furthermore, removal of molybdenum greatly increases the number of cracks which nucleate. This higher crack density would increase the relative area of the anode to the cathode and thus act to decrease the crack growth rate. Formerly with the Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA.  相似文献   

13.
The stress corrosion cracking of a sensitized Type 304 stainless steel has been studied at room temperature using controlled potentials and two concentrations of sodium thiosulfate. In both constant extension rate and constant load tests, the crack velocities attain extremely high values, up to 8 μm s-1. Scratching electrode experiments conducted at various pH values on simulated grain boundary material show that both the crack initiation frequency and crack velocity are closely related to the repassivation rate of the grain boundary material as expected on a dissolution-controlled mechanism; however, the maximum crack velocity at any potential is consistently about two orders of magnitude higher than that predicted from the electrochemical data. Frequent grain boundary separation ahead of the crack tip is thought to occur, but retarded repassivation of the grain boundary material is a necessary feature of the cracking. Effects of strain-generated martensite are discussed.  相似文献   

14.
The experimental results presented in this article are the first direct evidence of hydrogen diffusion in 4120 and 4130 high-strength steels undergoing a stress corrosion cracking (SCC) test with an enhancement of the hydrogen concentration at the crack tip. The hydrogen entry is evidenced by electrochemical permeation experiments performed either at the corrosion potential or under cathodic polarization in selected microstructures. The autoradiography of tritium associated with microdensitometric measurements allows measurement of the hydrogen distribution and local concentration at the crack tip of specimens undergoing SCC in a tritiated aqueous medium. The small enhancement in the tritium concentration measured at the crack tip of the 4120 steel may be a consequence of a strong contribution of trapping sites throughout the microstructure, prevailing on the effect of the stress state on the local concentration of tritium.  相似文献   

15.
A mechanism for creep crack growth is proposed by which the crack grows by formation of grain boundary cavities ahead of the crack tip. Two cases are considered; firstly, when cavity growth is diffusion controlled and secondly, where growth is deformation controlled. The resultant crack growth rates predicted by these theoretical models are compared with experimental data.  相似文献   

16.
《Acta Metallurgica Materialia》1991,39(12):3217-3225
Prior austenite grain boundary (PAGB) reheat cavitation has previously been shown to be controlled by a fine dispersion of incoherent PAGB particles and by the concentration of the overall deformation into deformation zones adjacent to the PAGB. A series of low-alloy baintic CrMoV steels have been investigated to establish the microstructural basis for PAGB deformation zones. It is shown that the fundamental cause of reheat cavitation in low alloy bainites is stress induced Grain Boundary Migration, which initiates at temperature immediately upon application of a load. The migrating boundary sweeps out a volume of material that is both particle and dislocation-free, relative to the secondary hardened grain interiors. This creates a mechanically weak zone at the PAGB. The overall strain during deformation is subsequently concentrated into these regions, producing extensive plastic deformation leading to failure by cavity growth and crack propagation within the PAGB deformation zone. The presence of large, stable carbides in high chromium CrMoV steels prevents PAGB migration and thus eliminates the PAGB deformation zones. Also matrix carbide coarsening in the high chromium steels leads to an increase in matrix recovery rates, which further permits more uniform deformation of the material.  相似文献   

17.
Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles.  相似文献   

18.
《Acta Metallurgica》1987,35(10):2399-2416
High temperature brittle intergranular fracture has recently been identified as a mode of failure in alloy steels. It is associated with the dynamic segregation of sulphur to cracks in hard microstructures stressed at elevated temperatures in a manner analogous to hydrogen embrittlement at ambient temperature. Several models have been proposed to describe the action of sulphur, but insufficient experimental data have been available for their evaluation. The present study characterises sulphur enrichment at cracks and on free surfaces at high temperature in detail using scanning Auger spectroscopy. Both intergranular and transgranular surfaces were studied at pressures of air from 10−9 to 10−3 torr. Two types of sulphur enrichment at cracks were identified; general segregation to crack faces and local enrichment close to crack tips. The source of sulphur was largely that dissolved in the ferrite matrix. Large sulphides, intersecting grain boundaries, made a minor contribution, while small “overheated” intergranular sulphides were inoperative as sulphur sources. The role of stress in encouraging sulphur segregation was confirmed. In addition, an intermediate pressure of air was found to enhance sulphur enrichment, but only at surface oxygen coverages of 15–25 at.%. These observations were generally consistent with the influence of the crack tip stress field on migration of the sulphur solute, described by the “pure drift” model of high temperature brittle intergranular fracture. Refinement of the model, using finite element stress analysis, is included.  相似文献   

19.
The high temperature stress rupture process in polycrystalline solids is examined in terms of grain boundary parting by vacancy condensation at the tip of a crack within the boundary. The gradient for diffusion of these defects is considered in the model to arise from the stress gradient in advance of the flaw tip. A rupture stress function is derived which is shown to closely describe the stress rupture behavior of a number of metals and high temperature alloys.  相似文献   

20.
The high temperature stress rupture process in polycrystalline solids is examined in terms of grain boundary parting by vacancy condensation at the tip of a crack within the boundary. The gradient for diffusion of these defects is considered in the model to arise from the stress gradient in advance of the flaw tip. A rupture stress function is derived which is shown to closely describe the stress rupture behavior of a number of metals and high temperature alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号