共查询到20条相似文献,搜索用时 12 毫秒
1.
二维人脸识别受光照、遮挡和姿态的影响较大.为了克服二维人脸识别的缺点,本文提出了一种基于深度学习的多模态融合三维人脸识别算法.该方法首先使用卷积自编码器将彩色图像和深度图进行融合,将融合后的图像作为网络的输入进行预训练,并且设计了一种新的损失函数cluster loss,结合Softmax损失,预训练了一个精度非常高的模型.之后使用迁移学习将预训练的模型进行微调,得到了一个轻量级神经网络模型.将原始数据集进行一系列处理,使用处理之后的数据集作为测试集,测试的识别准确率为96.37%.实验证明,该方法弥补了二维人脸识别的一些缺点,受光照和遮挡的影响非常小,并且相对于使用高精度三维人脸图像的三维人脸识别,本文提出的算法速度快,并且鲁棒性高. 相似文献
2.
李玲俐 《计算机与数字工程》2021,49(9):1912-1914,1929
针对基于深度学习理论的人脸识别技术应用进行了综述.分析了传统人脸识别技术面临的问题,阐述深度学习理论及研究现状,提出深度学习是人脸识别技术发展的重要研究方向,介绍了人脸识别领域中应用最多的两种模型深度信念网络和卷积神经网络,对基于深度信念网络的人脸识别技术和基于卷积神经网络的人脸识别技术进行了论述,最后对基于深度学习的... 相似文献
3.
人脸识别是图像领域的经典问题。为解决目前人脸识别中普遍存在的识别精度不高、特征点估计较为粗糙等问题,提出一种基于ResNet卷积神经网络(R-CNN)的人脸识别方法。该方法利用人脸特征探测器有效地提取了人脸特征,同时将R-CNN用于二维人脸识别,建立了人脸识别模型。实验采集了400张目标脸图片,并将其与人脸库中的1 000张样本进行混合。R-CNN模型共训练了130轮,能在摄像头中识别目标脸。在训练了80轮之后,模型准确率达到了90%以上,识别效果较好。相较于传统的人脸识别方法,该方法结合了深度学习方法,具有较高的识别率。 相似文献
4.
5.
基于深度卷积神经网络的人脸识别技术综述 总被引:1,自引:0,他引:1
《计算机应用与软件》2018,(1)
人脸识别是计算机视觉的重要应用之一,广义的人脸识别包含图像采集、人脸检测、人脸对齐、特征表示等过程。人脸识别的发展史主要是人脸特征表示方法的变迁史。针对特征的表示方法,从人脸识别技术的发展历史、研究现状和未来发展三个方面进行综述:分阶段对传统的几类经典的人脸识别算法进行回顾和总结;以深度学习算法的诞生过程为切入点,重点分析了在人脸识别中取得突破性进展的深度卷积神经网络DCNN(deep convolutional neural networks)的技术思想和关键问题;针对人脸识别和深度学习算法的重大挑战,展望了未来可能存在的发展方向。 相似文献
6.
张宁仙 《数字社区&智能家居》2022,(7):89-91
作为重要的人工智能研究方向,人脸识别研究近年来大量涌现,相关产品也在各领域广泛应用.基于此,文章将围绕一种基于深度学习提升人脸识别技术准确率的算法开展研究,在计算框架加速化和网络结构小型化支持下,实时化人脸识别得以实现,由此设计的人脸识别系统可用于物联网设备. 相似文献
7.
8.
烟草商业公司承担着向卷烟零售客户销售卷烟的业务。因为烟草行业对于零售客户可以购买的卷烟数量和销售情况有一定限制,所以零售客户在收货时需要进行拍照确认。这些收集的照片将会长期保留在公司的服务器中,等待人工审核和确认。当前内部监管面临两个难题,一是同一个接货人为多家店铺代订货,二是接货人与之前保存记录的信息不一致。这些行为都是潜在的违规行为。设计系统通过深度学习算法对比历史图片中的人脸数据信息,在发现违规问题时及时提醒相关工作人员,有效提高了监管的效率和质量。 相似文献
9.
10.
考虑到现实环境中的人脸图片在角度、光线、分辨率上的复杂程度,对Inception-ResNet-V1网络结构进行了改进,同时完成了数据集制作、超参数调节等相关工作,并在家庭服务机器人平台上进行了实验研究。实验结果表明,改进的网络结构在LFW测试集上准确率达到99.22%,高于原始网络结构的99.05%;在亚洲人脸数据集上准确率达到99.20%,高于原始网络结构的97.10%;在自建非匹配人脸数据集上误识别率为3.43%,低于原始网络结构的12.28%。可以看出,与原始网络结构相比,改进网络结构提升了人脸识别的准确率且降低了误识别率。 相似文献
11.
课堂考勤是课堂教学中的重要环节,随着信息技术的发展,以人脸识别为代表的生物特征识别技术应用于课堂考勤管理,但传统人脸识别技术存在识别速度慢、准确率低等问题。根据课堂考勤管理业务需求,设计了基于深度学习的人脸识别课堂考勤系统。该系统采用Dlib库的深度学习模型对摄像头捕获的学生图像信息进行人脸特征提取与人脸对比,可以自动进行人脸识别与数据统计。测试结果表明,该系统能够满足省时、高效、准确性高的设计要求。 相似文献
12.
三维人脸识别研究综述 总被引:10,自引:0,他引:10
近二十多年来,虽然基于图像的人脸识别已取得很大进展,并可在约束环境下获得很好的识别性能,但仍受光照、姿态、表情等变化的影响很大,其本质原因在于图像是三维物体在二维空间的简约投影.因此,利用脸部曲面的显式三维表达进行人脸识别正成为近几年学术界的研究热点.文中分析了三维人脸识别的产生动机、概念与基本过程;根据特征形式,将三维人脸识别算法分为基于空域直接匹配、基于局部特征匹配、基于整体特征匹配三大类进行综述;对二维和三维的双模态融合方法进行分类阐述;列出了部分代表性的三维人脸数据库;对部分方法进行实验比较,并分析了方法有效性的原因;总结了目前三维人脸识别技术的优势与困难,并探讨了未来的研究趋势. 相似文献
13.
人脸识别技术的出现具有划时代的意义,该技术凭借强大的技术支持被广泛应用于监控、安防、支付等领域。传统人脸识别具有卡顿和识别准确率低等问题,基于深度学习的人脸识别技术能够很好地解决这些问题,优化识别流程,提升识别效率。文章首先对深度学习、卷积神经网络及人脸识别进行概述,然后对人脸识别的数据预处理进行分析,包括人脸检测、人脸关键点监测和人脸归一化,最后对基于深度学习网络的人脸识别进行研究。 相似文献
14.
为适应现代汽车快速设计的需求,采用基于三维深度学习算法的汽车气动参数实时预测,计算汽车的空气阻力系数。利用Rhinoceros软件对包含多种车型的汽车模型库进行T样条曲面重构,制作汽车外形的三维点云数据集;分别利用FLUENT和CFX对模型逐个进行不同风速工况下的仿真分析,得到相应的空气阻力系数,并建立三维深度学习的训练和测试数据集;采用PointNet深度学习框架训练并计算各模型的空气阻力系数。训练集的对比结果表明,采用深度学习方法快速预测汽车气动性能可得到基本满意的效果。 相似文献
15.
16.
17.
《软件》2019,(9)
目前人脸识别技术已经得到了较多的应用,包括在安检工作、金融工作以及交通等领域中,其稳定性强、识别精度高,市场应用前景广阔,能够为用户信息的识别提供更便捷的服务。随着对人脸识别研究的深入,出现了更多的算法,最初大多都是提取浅层特征来进行分析,并采用特征融合的方式识别,在最后的识别过程中主要利用了联合贝叶斯分布等机器学习分类器进行处理。这种方法虽然能够达到一定的识别效果,但是精度不高,容易受到多种外部因素(光照、遮盖等)的影响,降低了识别结果的准确性。本文主要对人脸识别的框架进行了研究与分析,首先设计了人脸识别框架,然后对深度学习人脸识别算法的几个重要组成部分进行了分析与研究,主要包括人脸对齐模块、人脸特征提取、人脸识别验证模块等。 相似文献
18.
在二维PCA人脸识别算法的基础上,将PCA算法用于三维人脸识别,采用鼻尖点作为特征点。在CASIA三维人脸数据库中进行测试,达到了约为89.5%的识别率,能够识别出受外界干扰如扭转角度的图片,该算法性能优良。 相似文献
19.
基于局部二值模式和深度学习的人脸识别 总被引:2,自引:0,他引:2
针对人脸识别中深度学习直接提取人脸特征时忽略了其局部结构特征的问题,提出一种将分块局部二值模式(LBP)与深度学习相结合的人脸识别方法.首先,将人脸图像分块,利用均匀LBP算子分别提取图像各局部的LBP直方图特征,再按照顺序连接在一起形成整个人脸的LBP纹理特征; 其次,将得到的LBP特征作为深度信念网络(DBN)的输入,逐层训练网络,并在顶层形成分类面; 最后,用训练好的深度信念网络对人脸样本进行识别.在ORL、YALE和FERET人脸库上的实验结果表明,所提算法与采用支持向量机(SVM)的方法相比,在小样本的人脸识别中有很好的识别效果. 相似文献
20.
目前基于深度学习的人脸识别方法存在识别模型参数量大、特征提取速度慢的问题,而且现有人脸数据集姿态单一,在实际人脸识别任务中无法取得好的识别效果。针对这一问题建立了一种多姿态人脸数据集,并提出了一种轻量级的多姿态人脸识别方法。首先,使用多任务级联卷积神经网络(MTCNN)算法进行人脸检测,并且使用MTCNN最后包含的高层特征做人脸跟踪;然后,根据检测到的人脸关键点位置来判断人脸姿态,通过损失函数为ArcFace的神经网络提取当前人脸特征,并将当前人脸特征与相应姿态的人脸数据库中的人脸特征比对得到人脸识别结果。实验结果表明,提出方法在多姿态人脸数据集上准确率为96.25%,相较于单一姿态的人脸数据集,准确率提升了2.67%,所提方法能够有效提高识别准确率。 相似文献