首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 x 7 calibration matrix of Intralipid-dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0-0.3/cm for the absorption coefficient and 6-16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements.  相似文献   

2.
The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm(-1) and absorption coefficients between 0.002 and 0.1 mm(-1) showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam.  相似文献   

3.
Local and superficial near-infrared (NIR) optical-property characterization of turbid biological tissues can be achieved by measurement of spatially resolved diffuse reflectance at small source-detector separations (<1.4 mm). However, in these conditions the inverse problem, i.e., calculation of localized absorption and the reduced scattering coefficients, is necessarily sensitive to the scattering phase function. This effect can be minimized if a new parameter of the phase function gamma, which depends on the first and the second moments of the phase function, is known. If gamma is unknown, an estimation of this parameter can be obtained by the measurement, but the uncertainty of the absorption coefficient is increased. A spatially resolved reflectance probe employing multiple detector fibers (0.3-1.4 mm from the source) is described. Monte Carlo simulations are used to determine gamma, the reduced scattering and absorption coefficients from reflectance data. Probe performance is assessed by measurements on phantoms, the optical properties of which were measured by other techniques [frequency domain photon migration (FDPM) and spatially resolved transmittance]. Our results show that changes in the absorption coefficient, the reduced scattering coefficient, and gamma can be measured to within +/-0.005 mm(-1), +/-0.05 mm(-1), and +/-0.2, respectively. In vivo measurements performed intraoperatively on a human skull and brain are reported for four NIR wavelengths (674, 811, 849, 956 nm) when the spatially resolved probe and FDPM are used. The spatially resolved probe shows optimum measurement sensitivity in the measurement volume immediately beneath the probe (typically 1 mm(3) in tissues), whereas FDPM typically samples larger regions of tissues. Optical-property values for human skull, white matter, scar tissue, optic nerve, and tumors are reported that show distinct absorption and scattering differences between structures and a dependence on the phase-function parameter gamma.  相似文献   

4.
We report measurement of optical transport parameters of normal and malignant (ductal carcinoma) human breast tissue. A spatially resolved steady-state diffuse reflectance technique was used for measurement of the reduced scattering coefficient (mu(s)?) and the absorption coefficient (mu(a)) of the tissue. The anisotropy parameter of scattering (g) was estimated by goniophotometric measurements of the scattering phase function. The values of mu(s)? and mu(a) for malignant breast tissue were observed to be larger than those for normal breast tissue over the wavelength region investigated (450-650 nm). Further, by using both the diffuse reflectance and the goniophotometric measurements, we estimated the Mie equivalent average radius of tissue scatterers to be larger in malignant tissue than in normal tissue.  相似文献   

5.
Palmer GM  Ramanujam N 《Applied optics》2006,45(5):1062-1071
A flexible and fast Monte Carlo-based model of diffuse reflectance has been developed for the extraction of the absorption and scattering properties of turbid media, such as human tissues. This method is valid for a wide range of optical properties and is easily adaptable to existing probe geometries, provided a single phantom calibration measurement is made. A condensed Monte Carlo method was used to speed up the forward simulations. This model was validated by use of two sets of liquid-tissue phantoms containing Nigrosin or hemoglobin as absorbers and polystyrene spheres as scatterers. The phantoms had a wide range of absorption (0-20 cm(-1)) and reduced scattering coefficients (7-33 cm(-1)). Mie theory and a spectrophotometer were used to determine the absorption and reduced scattering coefficients of the phantoms. The diffuse reflectance spectra of the phantoms were measured over a wavelength range of 350-850 nm. It was found that optical properties could be extracted from the experimentally measured diffuse reflectance spectra with an average error of 3% or less for phantoms containing hemoglobin and 12% or less for phantoms containing Nigrosin.  相似文献   

6.
A system that incorporated a laser source and a CCD camera was used to measure spatially-resolved steady-state diffuse reflectance. Monte Carlo simulations and experiments in tissue phantoms were used to train a neural network that characterizes the reflectance data on a turbid medium. The neural network was used to extract the optical properties (scattering and absorption coefficients) of biological tissue. The accuracy of the neural network was investigated and validated. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 3% for the reduced scattering coefficient and 9% for the absorption coefficients. The optical properties of human skin were also measured in vivo at 633 nm. For human skin tissue it was found that our results were in good agreement with their reference values.  相似文献   

7.
We present a detailed characterization of a system for fast time-resolved spectroscopy of turbid media based on supercontinuum generation in a photonic crystal fiber. The light source provides subpicosecond pulses in the 550-1000-nm spectral range, at 85 MHz, at an average power of up to 50 mW. Wavelength-resolved detection is accomplished by means of a spectrometer coupled to a 16-channel, multianode photomultiplier tube, giving a resolution of 4.5-35 nm/channel, depending on the grating. Time-dispersion curves are acquired with time-correlated single-photon counting, and absorption and reduced scattering coefficients are determined by fitting the data to the diffusion equation. We characterized the system by measuring the time-resolved diffuse reflectance of epoxy phantoms and by assessing the performance in terms of accuracy, linearity, noise sensitivity, stability, and reproducibility. The results were similar to those from previous systems, whereas the full-spectrum (610-810 nm) acquisition time was as short as 1 s owing to the parallel acquisition. We also present the first in vivo real-time dynamic spectral measurements showing tissue oxygenation changes in the arm of a human subject.  相似文献   

8.
Nair MS  Ghosh N  Raju NS  Pradhan A 《Applied optics》2002,41(19):4024-4035
We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (mu(s)') and the absorption coefficient (mu(a)) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.  相似文献   

9.
We compare two methods for the optical characterization of turbid media. The estimates of the absorption and reduced scattering coefficients (mu(a) and mu(')(s)) by a spatially resolved method and a time-resolved method are performed on tissue-like phantoms. Aqueous suspension of microspheres and Intralipid are used as scattering media with the addition of ink as an absorber. mu(')(s) is first measured on weakly absorbing media. The robustness of these measurements is then tested with respect to a variation of mu(a). The spatially resolved method gave more accurate estimates for mu(')(s) whereas the time-resolved method gave better results for mu(a) estimates.  相似文献   

10.
We present a steady-state radially resolved diffuse reflectance spectrometer capable of measuring the absorption and transport scattering spectra of tissue-simulating phantoms over an adjustable 170-nm wavelength interval in the visible and near infrared. Measurements in a variety of phantoms are demonstrated over the relevant range of tissue optical properties, and the accuracy of the instrument is found to be approximately 10% in both scattering and absorption. Monte Carlo simulations designed to test the accuracy of the instrument are presented that support the experimental findings.  相似文献   

11.
Qin J  Lu R 《Applied optics》2006,45(32):8366-8373
We present a method and technique of using hyperspectral diffuse reflectance for rapid determination of the optical properties of turbid media. A hyperspectral imaging system in line scanning mode was used to acquire spatial diffuse reflectance profiles from liquid phantoms made up of absorbing dyes and fat emulsion scatterers over the spectral range of 450-1000 nm instantaneously. The hyperspectral reflectance data were analyzed by using a steady-state diffusion approximation model for semi-infinite homogeneous media. A calibration procedure was developed to compensate the nonuniform instrument response of the imaging system, and a curve-fitting algorithm was used to extract absorption and reduced scattering coefficients (mua and mus', respectively) for the phantoms in the wavelength range from 530 to 900 nm. The hyperspectral imaging system gave good measures of mua and mus' for the phantoms with average fitting errors of 12% and 7%, respectively. The hyperspectral imaging technique is fast, noncontact, and easy to use, which makes it especially suitable for measurement of the optical properties of turbid liquid and solid foods.  相似文献   

12.
The overall image quality and diagnostic potential of time-resolved transmittance imaging depend on sensitivity to optical contrast, capacity to discriminate scattering from absorption contributions, and spatial resolution. We have investigated experimentally the effects of the optical properties of the background medium on the overall image quality of optical imaging based on fitting the experimental data to the solution of the diffusion equation and on time gating. Images were acquired from phantoms with different background optical properties, while the optical contrast between inhomogeneities and background is kept constant. Data were collected every 0.2 cm over a 6 cm x 6 cm area from realistic tissue phantoms containing cylindrical inhomogeneities (1 cm high and 1 cm in diameter) embedded in a 5-cm-thick turbid slab. The optical coefficients of the background were varied in the ranges of 5-15 cm(-1) for transport scattering and 0.02-0.08 cm(-1) for absorption. The optical contrast for the inclusions was kept at values of -50% and +50% for the scattering and -75% and +300% for the absorption. The results show that both high scattering and high absorption are beneficial.  相似文献   

13.
Qin J  Lu R 《Applied spectroscopy》2007,61(4):388-396
A hyperspectral imaging system in line scanning mode was used for measuring the absorption and scattering properties of turbid food materials over the visible and near-infrared region of 530-900 nm. An instrumental calibration procedure was developed to compensate for the nonuniform instrument response of the imaging system. A nonlinear curve-fitting algorithm for a steady-state diffusion theory model was proposed to determine absorption (mua) and reduced scattering coefficients (mu's) from the spatially resolved hyperspectral reflectance profiles. The hyperspectral imaging system provided good measurement of mua and mu's for the simulation samples made of Intralipid scattering material and three absorbers (blue dye, green dye, and black ink) with average fitting errors of 16% and 11%, respectively. The optical properties of the fruit and vegetable juices and milks were determined. Values of the absorption and reduced scattering coefficient at 600 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.995 and 0.998, respectively. Compared to time-resolved and frequency-domain techniques, the hyperspectral imaging technique provides a faster and simpler means for measuring the optical properties of turbid food and agricultural products.  相似文献   

14.
Light that is delivered to the tissue surface undergoes multiple elastic scattering and absorption; part of it returns to the surface as optical diffuse reflectance, carrying quantitative information on the structure and composition of the measured tissue. In this paper, we utilized a well tested and publicly available Monte Carlo simulation software to simulate optical diffuse reflectance on normal and malignant human breast tissue in the visible wavelength region 450–650 nm. Based on the Monte Carlo simulation results, we discovered a feature parameter of optical diffuse reflectance on the simulated tissue surface. Normal and malignant human breast tissue may be discriminated by the value of the feature parameter. The values of the feature parameter are shown for normal and malignant human breast tissue in the visible wavelength region 450–650 nm. Experiments with tissue phantoms showed that the feature parameter is correlated to the component of the phantom. So the feature parameter is useful for the non-invasive optical diagnosis of biological tissue.  相似文献   

15.
We describe a method for determining the reduced scattering and absorption coefficients of turbid biological media from the spatially resolved diffuse reflectance. A Sugeno Fuzzy Inference System in conjunction with data preprocessing techniques is employed to perform multivariate calibration and prediction on reflectance data generated by Monte Carlo simulations. The preprocessing consists of either a principal component analysis or a new, extended curve-fitting procedure originating from diffusion theory. Prediction tests on reflectance data with absorption coefficients between 0.04 and 0.06 mm(-1) and reduced scattering coefficients between 0.45 and 0.99 mm(-1) show the root-mean-square error of this method to be 0.25% for both coefficients. With reference to practical applications, we also describe how the prediction accuracy is affected by using relative instead of absolute reflectance data, by imposing measurement noise on the reflectance data, and by changing the number and the position of detectors.  相似文献   

16.
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.  相似文献   

17.
Nishidate I  Yoshida K  Sato M 《Applied optics》2010,49(34):6617-6623
We simultaneously measured the diffuse reflectance spectra and transmittance spectra of in vitro rat cerebral cortical tissue slices perfused with artificial cerebrospinal fluid (aCSF) in the wavelength range from 500 to 900 nm. An ischemia-like condition in the cortical tissue was induced by oxygen/glucose deprivation (OGD) of the aCSF. Diffuse reflectance and transmittance of the cortical slices were decreased and increased, respectively, during OGD. Spectral data of reduced scattering coefficients and absorption coefficients were estimated by the inverse Monte Carlo simulation for light transport in tissue. As with OGD, significant decrease of the reduced scattering coefficients and alteration of the absorption coefficient spectrum were observed over the measured wavelength range. The mean maximum amplitudes of change in the absorption coefficient at 520, 550, 605, and 830 nm were 0.33 ± 0.14, 0.30 ± 0.12, 0.30 ± 0.14, and -0.04 ± 0.16, respectively, whereas those in the reduced scattering coefficient at 520, 550, 605, and 830 nm were -0.37 ± 0.08, -0.38 ± 0.08, -0.38 ± 0.08, and -0.39 ± 0.08. Variations in the reduced scattering coefficients implied cell deformation mainly due to cell swelling, whereas those in the absorption spectra indicated reductions in heme aa(3) and CuA in cytochrome c oxidase and cytochrome c.  相似文献   

18.
Sun M  Zhang C  Hao Z  Tian J 《Applied optics》2007,46(17):3649-3652
A nylon bar with different surface roughness is used as a simulation sample of biological tissue for the determination of optical properties by using the spatially resolved steady-state diffuse reflection technique. The results obtained indicate that surface roughness has some effects on the determination of the optical properties of the nylon bar. The determined reduced scattering coefficient decreases with the decrease of the surface roughness of the nylon bar and goes to a constant for the lower surface roughness, and the determined absorption coefficient increases with the decrease of the surface roughness of the nylon bar. Consequently, the optical properties of the tissues obtained by the spatially resolved steady-state diffuse reflection technique should be modified.  相似文献   

19.
Fiber-optic-based oblique-incidence reflectometry is a simple and accurate method for measuring the absorption and reduced scattering coefficients mu(a) and mu?(s) of semi-infinite turbid media. Obliquely incident light produces a spatial distribution of diffuse reflectance that is not centered about the point of light entry. The amount of shift in the center of diffuse reflectance is directly related to the medium's diffusion length D. We developed a fiber-optic probe to deliver light obliquely and sample the relative profile of diffuse reflectance. Measurement in absolute units is not necessary. From the profile, it was possible to measure D, perform a curve fit for the effective attenuation coefficient mu(eff), and then calculate mu(a) and mu?(s). This method was verified with Monte Carlo simulations and tested on tissue phantoms. Our measurements of D and mu(eff) had an accuracy of approximately 5%, thus giving us 10% and 5% accuracy for mu(a) and mu?(s), respectively.  相似文献   

20.
Trinks O  Beck WH 《Applied optics》1998,37(30):7070-7075
With a first application of semiconductor lasers to absorption measurements of seeded atomic Rb in high-enthalpy flow fields, a diagnostic technique for time-resolved determination of flow velocity and gas temperature with a line-shape analysis was developed. In our measurements a GaAlAs diode laser was used to scan repetitively at 15 kHz over 1.3 cm(-1) across the D(2) resonance transition (5S(1/2) ? 5P(3/2), 780.2 nm) of seeded atomic Rb to obtain multiple absorption line shapes. The time-dependent signal contains highly resolved spectral line-shape information, which we interpret by fitting the spectrally resolved line shapes to Voigt profiles. Kinetic temperatures in the range 900-1400 K and gas velocities in the range 3900-6200 ms(-1) were obtained from the Doppler-broadened component of the line shape and from the Doppler shift, respectively, of the absorption frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号