首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a new mechanism to select the cells and the wireless technologies for layer-encoded video multicasting in the heterogeneous wireless networks. Different from the previous mechanisms, each mobile host in our mechanism can select a different cell with a different wireless technology to subscribe each layer of a video stream, and each cell can deliver only a subset of layers of the video stream to reduce the bandwidth consumption. We formulate the Cell and Technology Selection Problem (CTSP) to multicast each layer of a video stream as an optimization problem. We use Integer Linear Programming to model the problem and show that the problem is NP-hard. To solve the problem, we propose a distributed algorithm based on Lagrangean relaxation and a protocol based on the proposed algorithm. Our mechanism requires no change of the current video multicasting mechanisms and the current wireless network infrastructures. Our algorithm is adaptive not only to the change of the subscribers at each layer, but also the change of the locations of each mobile host.  相似文献   

2.
An Efficient Multicast Routing Protocol in Wireless Mobile Networks   总被引:11,自引:0,他引:11  
Suh  Young-Joo  Shin  Hee-Sook  Kwon  Dong-Hee 《Wireless Networks》2001,7(5):443-453
Providing multicast service to mobile hosts in wireless mobile networking environments is difficult due to frequent changes of mobile host location and group membership. If a conventional multicast routing protocol is used in wireless mobile networks, several problems may be experienced since existing multicast routing protocols assume static hosts when they construct the multicast delivery tree. To overcome the problems, several multicast routing protocols for mobile hosts have been proposed. Although the protocols solve several problems inherent in multicast routing proposals for static hosts, they still have problems such as non-optimal delivery path, datagram duplication, overheads resulting from frequent reconstruction of a multicast tree, etc. In this paper, we summarize these problems of multicast routing protocols and propose an efficient multicast routing protocol based on IEFT mobile IP in wireless mobile networks. The proposed protocol introduces a multicast agent, where a mobile host receives a tunneled multicast datagram from a multicast agent located in a network close to it or directly from the multicast router in the current network. While receiving a tunneled multicast datagram from a remote multicast agent, the local multicast agent may start multicast join process, which makes the multicast delivery route optimal. The proposed protocol reduces data delivery path length and decreases the amount of duplicate copies of multicast datagrams. We examined and compared the performance of the proposed protocol and existing protocols by simulation under various environments and we got an improved performance over the existing proposals.  相似文献   

3.
In this paper, we propose a new data broadcast mechanism with network coding in heterogeneous wireless networks. Our mechanism adaptively clusters the mobile hosts in fewer cells to minimize the bandwidth consumption. In addition, we adaptively code the data according to the data temporarily stored in each mobile host with a distributed manner. Our mechanism allows each delivered message to be coded from only a subset of data to further reduce the number of required messages. We formulate the cell selection and broadcast coding problem with integer programming and prove that the problem is NP-hard. We design a distributed algorithm based on Lagrangean relaxation. Our algorithm needs no server to record the location, queried, and stored information of receivers. Moreover, our algorithm is adaptive to the dynamic group membership, mobility, queried, and stored data of receivers.  相似文献   

4.
With the increasing demand for real-time services in next generation wireless networks, quality-of-service (QoS) based routing offers significant challenges. Multimedia applications, such as video conferencing or real-time streaming of stock quotes, require strict QoS guarantee on bandwidth and delay parameters while communicating among multiple hosts. These applications give rise to the need for efficient multicast routing protocols, which will be able to determine multicast routes that satisfy different QoS constraints simultaneously. However, designing such protocols for optimizing multiple objectives, is computationally intractable. Precisely, discovering optimal multicast routes is an NP-hard problem when the network state information is inaccurate – a common scenario in wireless networks. Based on the multi-objective genetic algorithm (MOGA), in this paper we propose a QoS-based mobile multicast routing protocol (QM2RP) that determines near-optimal routes on demand. Our protocol attempts to optimize multiple QoS parameters, namely end-to-end delay, bandwidth requirements, and residual bandwidth utilization. Furthermore, it is fast and efficient in tackling dynamic multicast group membership information arising due to user mobility in wireless cellular networks. Simulation results demonstrate that the proposed protocol is capable of discovering a set of QoS-based, near-optimal multicast routes within a few iterations, even with imprecise network information. Among these routes one can choose the best possible one depending on the specified QoS requirements. The protocol is also scalable and yields lower multicast call-blocking rates for dynamic multicast group size in large networks.  相似文献   

5.
Wireless mesh networking (WMN) is an emerging technology for future broadband wireless access. The proliferation of the mobile computing devices that are equipped with cameras and ad hoc communication mode creates the possibility of exchanging real-time data between mobile users in wireless mesh networks. In this paper, we argue for a ring-based multicast routing topology with support from infrastructure nodes for group communications in WMNs. We study the performance of multicast communication over a ring routing topology when 802.11 with RTS/CTS scheme is used at the MAC layer to enable reliable multicast services in WMNs. We propose an algorithm to enhance the IP multicast routing on the ring topology. We show that when mesh routers on a ring topology support group communications by employing our proposed algorithms, a significant performance enhancement is realized. We analytically compute the end-to-end delay on a ring multicast routing topology. Our results show that the end-to-end delay is reduced about 33 %, and the capacity of multicast network (i.e., maximum group size that the ring can serve with QoS guarantees) is increased about 50 % as compared to conventional schemes. We also use our analytical results to develop heuristic algorithms for constructing an efficient ring-based multicast routing topology with QoS guarantees. The proposed algorithms take into account all possible traffic interference when constructing the multicast ring topology. Thus, the constructed ring topology provides QoS guarantees for the multicast traffic and minimizes the cost of group communications in WMNs.  相似文献   

6.
MobiCast: A multicast scheme for wireless networks   总被引:11,自引:0,他引:11  
In this paper, we propose a multicast scheme known as MobiCast that is suitable for mobile hosts in an internetwork environment with small wireless cells. Our scheme adopts a hierarchical mobility management approach to isolate the mobility of the mobile hosts from the main multicast delivery tree. Each foreign domain has a domain foreign agent. We have simulated our scheme using the Network Simulator and the measurements show that our multicast scheme is effective in minimizing disruptions to a multicast session due to the handoffs of the mobile group member, as well as reducing packet loss when a mobile host crosses cell boundaries during a multicast session.  相似文献   

7.
Internet protocol television (IPTV) service depends on the network quality of service (QoS) and bandwidth of the broadband service provider. IEEE 802.16j mobile multihop relay Worldwide Interoperability for Microwave Access networks have the opportunity to offer high bandwidth capacity by introducing relay stations. However, to actually satisfy QoS requirements for offering IPTV services (HDTV, SDTV, Web TV, and mobile TV) for heterogeneous users' requests, providers must use a video server for each IPTV service type, which increases the network load, especially bandwidth consumption and forwarding time. In this paper, we present a solution for forwarding IPTV video streaming to diverse subscribers via an 802.16j broadband wireless access network. In particular, we propose a new multicast tree construction and aggregation mechanism based on the unique property of prime numbers. Performance evaluation results show that the proposed scheme reduces both bandwidth consumption and forwarding time.  相似文献   

8.
Secure Multicast in Wireless Networks of Mobile Hosts: Protocols and Issues   总被引:1,自引:0,他引:1  
Multicast services and wireless interconnection networks are among the emerging technologies of the last decade. A significant amount of research has been separately performed in the areas of secure multicast and wireless interconnection networks. In this paper we investigate the issues of designing secure multicast services in wireless mobile environments for dynamic groups and propose protocols for key management for a variety of scenarios. Our solution decouples mobility management from group dynamics management, by taking into account the level of trust in the support stations. In particular, we show that protocol efficiency on the mobile host side can be traded-off with the level of trust in the support stations.  相似文献   

9.
Supporting IP Multicast for Mobile Hosts   总被引:6,自引:0,他引:6  
  相似文献   

10.
The Universal Mobile Telecommunications System (UMTS) all-IP network supports IP multimedia services through the IP Multimedia Subsystem (IMS). This paper proposes a mobile Quality-of-Service (QoS) framework for heterogeneous IMS interworking. To reduce the handoff disruption time, this framework supports the IMS mobility based on the concept of Session Initiation Protocol (SIP) multicast. In our approach, the mobility of a User Equipment (UE) is modeled as a transition in the multicast group membership. With the concept of dynamic shifting of the multicast group's members, the flow of actual data packets can be switched to the new route as quickly as possible. To overcome mobility impact on service guarantees, UEs need to make QoS resource reservations in advance at neighboring IMS networks, where they may visit during the lifetime of the ongoing sessions. These locations become the leaves of the multicast tree in our approach. To obtain more efficient use of the scarce wireless bandwidth, our approach allows UEs to temporarily exploit the inactive bandwidths reserved by other UEs in the current IMS/access network. Analytic and simulation models are developed to investigate our resource reservation scheme. The results indicate that our scheme yields comparable performance to that of the previously proposed channel assignment schemes.  相似文献   

11.
An important problem in both wireless and wired communication networks is to be able to efficiently multicst information to a group of network sites. Multicasting reduces the transmission overhead of both wireless and wired networks and the time it takes for all the nodes in the subset to receive the information. Since transmission bandwidth is a scarce commodity especially in wireless networks, efficient and near minimum-cost multicast algorithms are particularly useful in the wireless context. In this paper, we discuss methods of establishing efficient and near minimum-cost multicast routing in communication networks. In particular, we discuss an efficient implementation of a widely used multicast routing method which can construct a multicast tree with a cost no greater than twice the cost of an optimal tree. We also present two efficient multicast tree constructions for a general version of the multicast routing problem in which a network consists of different classes of nodes, where each class can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other classes. Because of their efficient running times, these multicast routing methods are particularly useful in the mobile communication environments where topology changes will imply recomputation of the multicast trees. Furthermore, the proposed efficient and near minimum-cost multicast routing methods are particularly suited to the wireless communication environments, where transmission bandwidth is more scarce than wired communication environments.Partially supported by NSF/LaSER under grant number EHR-9108765, by LEQSF grant number 94-RD-A-39, by NASA under grant number NAG 5-2842.  相似文献   

12.
The mobile multimedia applications have recently generated much interest in wireless ad hoc networks with supporting the quality-of-service (QoS) communications. The QoS metric considered in this work is the reserved bandwidth, i.e., the time slot reservation. We approach this problem by assuming a common channel shared by all hosts under a TDMA (Time Division Multiple Access) channel model. In this paper, we propose a new TDMA-based QoS multicast routing protocol, namely hexagonal-tree QoS multicast protocol, for a wireless mobile ad hoc network. Existing QoS routing solutions have addressed this problem by assuming a stronger multi-antenna model or a less-strong CDMA-over-TDMA channel model. While more practical and less costly, using a TDMA model needs to face the challenge of radio interference problems. The simpler TDMA model offers the power-saving nature. In this paper, we propose a new multicast tree structure, namely a hexagonal-tree, to serve as the QoS multicasting tree, where the MAC sub-layer adopts the TDMA channel model. In this work, both the hidden-terminal and exposed-terminal problems are taken into consideration to possibly exploit the time-slot reuse capability. The hexagonal-based scheme offers a higher success rate for constructing the QoS multicast tree due to the use of the hexagonal-tree. A hexagonal-tree is a tree whose sub-path is a hexagonal-path. A hexagonal-path is a special two-path structure. This greatly improves the success rate by means of multi-path routing. Performance analysis results are discussed to demonstrate the achievement of efficient QoS multicasting.  相似文献   

13.
Low-latency mobile IP handoff for infrastructure-mode wireless LANs   总被引:13,自引:0,他引:13  
The increasing popularity of IEEE 802.11-based wireless local area networks (LANs) lends them credibility as a viable alternative to third-generation (3G) wireless technologies. Even though wireless LANs support much higher channel bandwidth than 3G networks, their network-layer handoff latency is still too high to be usable for interactive multimedia applications such as voice over IP or video streaming. Specifically, the peculiarities of commercially available IEEE 802.11b wireless LAN hardware prevent existing mobile Internet protocol (IP) implementations from achieving subsecond Mobile IP handoff latency when the wireless LANs are operating in the infrastructure mode, which is also the prevailing operating mode used in most deployed IEEE 802.11b LANs. In this paper, we propose a low-latency mobile IP handoff scheme that can reduce the handoff latency of infrastructure-mode wireless LANs to less than 100 ms, the fastest known handoff performance for such networks. The proposed scheme overcomes the inability of mobility software to sense the signal strengths of multiple-access points when operating in an infrastructure-mode wireless LAN. It expedites link-layer handoff detection and speeds up network-layer handoff by replaying cached foreign agent advertisements. The proposed scheme strictly adheres to the mobile IP standard specification, and does not require any modifications to existing mobile IP implementations. That is, the proposed mechanism is completely transparent to the existing mobile IP software installed on mobile nodes and wired nodes. As a demonstration of this technology, we show how this low-latency handoff scheme together with a wireless LAN bandwidth guarantee mechanism supports undisrupted playback of remote video streams on mobile stations that are traveling across wireless LAN segments.  相似文献   

14.
Efficient routing and wavelength assignment for multicast in WDMnetworks   总被引:1,自引:0,他引:1  
The next generation multimedia applications such as video conferencing and HDTV have raised tremendous challenges on the network design, both in bandwidth and service. As wavelength-division-multiplexing (WDM) networks have emerged as a promising candidate for future networks with large bandwidth, supporting efficient multicast in WDM networks becomes eminent. Different from the IP layer, the cost of multicast at the WDM layer involves not only bandwidth (wavelength) cost, but also wavelength conversion cost and light splitting cost. It is well known that the optimal multicast problem in WDM networks is NP-hard. In this paper, we develop an efficient approximation algorithm consisting of two separate but integrated steps: multicast routing and wavelength assignment. We prove that the problem of optimal wavelength assignment on a multicast tree is not NP-hard; in fact, an optimal wavelength assignment algorithm with complexity of O(NW) is presented. Simulation results have revealed that the optimal wavelength assignment beats greedy algorithms by a large margin in networks using many wavelengths on each link such as dense wavelength-division-multiplexing (DWDM) networks. Our proposed heuristic multicast routing algorithm takes into account both the cost of using wavelength on links and the cost of wavelength conversion. The resulting multicast tree is derived from the optimal lightpaths used for unicast  相似文献   

15.
There has been a surge of interest in the delivery of personalized information to users (e.g., personalized stocks or travel information), particularly as mobile users with limited terminal device capabilities increasingly desire updated and targeted information in real time. When the number of information recipients is large and there is sufficient commonality in their interests, as is often the case, IP multicast is an efficient way of delivering the information. However, IP multicast services do not consider the structure and semantics of the information in the multicast process. We propose the use of Content-Based Multicast (CBM) where extra content filtering is performed at the interior nodes of the IP multicast tree; this will reduce network bandwidth usage and delivery delay, as well as the computation required at the sources and sinks. We evaluate the situations in which CBM is advantageous. The benefits of CBM depend critically upon how well filters are placed at interior nodes of the IP multicast tree and the costs depend upon those introduced by filters themselves. Further, we consider the benefits of allowing the filters to be mobile so as to respond to user mobility or changes in user interests and the corresponding costs of filter mobility. The criterion that we consider is the total network bandwidth utilization. For this criterion, we develop an optimal filter placement algorithm, as well as a heuristic that executes faster than the optimal algorithm. We evaluate the algorithms by means of simulation experiments. Our results indicate that filters can be effective in substantially reducing bandwidth. We also find filter mobility is worthwhile if there is marked large-scale user mobility. We conclude with suggestions for further work.  相似文献   

16.
陈怡  胡瑞敏  高戈 《电子学报》2011,39(11):2583-2588
无线多播最优资源分配策略是无线AdHoc网络的核心问题.本文提出自适应多播控制算法(AMCAdaptive Multicast Control),采用分段效用函数精确量化用户感知,降低无效带宽分配次数,使之适应中速及高速移动Ad Hoc网络;引入单位资源效用参数和接入判决机制,改善原有模型中带宽平均分配造成的资源浪费;...  相似文献   

17.
Fast and scalable wireless handoffs in support of mobile Internet audio   总被引:6,自引:0,他引:6  
Future internetworks will include large numbers of portable devices moving among small wireless cells. We propose a hierarchical mobility management scheme for such networks. Our scheme exploits locality in user mobility to restrict handoff processing to the vicinity of a mobile node. It thus reduces handoff latency and the load on the internetwork. Our design is based on the Internet Protocol (IP) and is compatible with the Mobile IP standard. We also present experimental results for the lowest level of the hierarchy. We implemented our local handoff mechanism on Unix-based portable computers and base stations, and evaluated its performance on a WaveLAN network. These experiments show that our handoffs are fast enough to avoid noticeable disruptions in interactive audio traffic. For example, our handoff protocol completes less than 10 milliseconds after a mobile node initiates it. Our mechanism also recovers from packet losses suffered during the transition from one cell to another. This work helps extend Internet telephony and teleconferencing to mobile devices that communicate over wireless networks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Dario  Marco   《Ad hoc Networks》2006,4(6):724-748
Ad hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Existing multicast protocols fall short in a harsh ad hoc mobile environment, since node mobility causes conventional multicast trees to rapidly become outdated. The amount of bandwidth resource required for building up a multicast tree is less than that required for other delivery structures, since a tree avoids unnecessary duplication of data. However, a tree structure is more subject to disruption due to link/node failure and node mobility than more meshed structures. This paper explores these contrasting issues and proposes PPMA, a Probabilistic Predictive Multicast Algorithm for ad hoc networks, that leverages the tree delivery structure for multicasting, solving its drawbacks in terms of lack of robustness and reliability in highly mobile environments. PPMA overcomes the existing trade-off between the bandwidth efficiency to set up a multicast tree, and the tree robustness to node energy consumption and mobility, by decoupling tree efficiency from mobility robustness. By exploiting the non-deterministic nature of ad hoc networks, the proposed algorithm takes into account the estimated network state evolution in terms of node residual energy, link availability and node mobility forecast, in order to maximize the multicast tree lifetime, and consequently reduce the number of costly tree reconfigurations. The algorithm statistically tracks the relative movements among nodes to capture the dynamics in the ad hoc network. This way, PPMA estimates the node future relative positions in order to calculate a long-lasting multicast tree. To do so, it exploits the most stable links in the network, while minimizing the total network energy consumption. We propose PPMA in both its centralized and distributed version, providing performance evaluation through extensive simulation experiments.  相似文献   

20.
This paper focuses on the problem of increasing the traffic capacity (volume of admissible traffic) of broadcast and multicast flows in a wireless mesh network (WMN). We study and suggest routing strategies where the process of constructing the forwarding tree considers three distinct features: (a) the ability of individual mesh nodes to perform link-layer broadcasts at multiple rates, (b) the wireless broadcast advantage, whereby a single broadcast transmission covers multiple neighboring receivers and (c) the residual transmission capacity at a WMN node, subject to intereference-based constraints from existing traffic flows in its neighborhood. Our metric of interest is the total number of broadcast and multicast flows that can be admitted into the network, without resulting in unacceptable degradation in metrics such as packet loss and dissemination latency. Our discrete event simulations show that the broadcast tree construction heuristic which takes both transmission rate and residual bandwidth into account out-performs those that do not. Building on our work on resource-aware broadcast tree construction, we propose a resource-aware multicast tree construction algorithm which exploits the multiple link-layer rates, the wireless broadcast advantage and the amount of resources available. Simulation results show that this algorithm performs better than heuristics based on pruning a broadcast tree or shortest path trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号