首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two types of NiO/γ-Al2O3 catalysts prepared by the impregnation and the sol–gel method were used for the partial oxidation of methane to syngas at 850°C (GHSV1.8×105 lkg−1 h−1). The effects of the carbon deposition, the loss and sintering of nickel and the phase transformation of γ-Al2O3 support on the catalytic performance during 80 h POM reaction were investigated with a series of characterization such as XRD, BET, AAS, TG, and XPS. The results indicated that the carbon deposition and the loss and sintering of nickel could not cause the serious decrease of catalytic performance over NiO/γ-Al2O3 catalyst during the short-time reaction. However, the slow process of the support γ-Al2O3 phase transforming into -Al2O3 could slowly decrease the performance of NiO/γ-Al2O3 catalysts. Aimed at the reasons of the deactivation, an improved catalyst was obtained by the complexing agent-assisted sol–gel method.  相似文献   

2.
A series of phosphorus promoted γ-Al2O3 supported NiMo carbide catalysts with 0–4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H2 temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/γ-Al2O3 carbide, increased the dispersion of β-Mo2C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/γ-Al2O3 carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/γ-Al2O3 carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/γ-Al2O3 carbide catalysts showed enhanced HDN activity compared to the NiMo/γ-Al2O3 catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/γ-Al2O3 carbide with LGO and dibenzothiophene. P addition to NiMo/γ-Al2O3 carbide accelerated CN bond breaking and thus increased the HDN activity.  相似文献   

3.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al2O3 catalysts on the surface properties and reactivity for NO reduction by C3H6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al2O3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al2O3 and 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalysts calcined at 1073 K possess a CuAl2O4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C3H6 shows that the CuAl2O4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl2O4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al2O3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl2O4 phase with high aggregation and preferential promotion of C3H6 combustion to COx by MnO2. The engine dynamometer test for NO reduction shows that the C3H6 is a more effective reducing agent for NO reduction than the C2H5OH. The maximum reactivity for NO reduction by C3H6 is reached when the NO/C3H6 ratio is one.  相似文献   

4.
利用等体积浸渍法制备K2CO3/γ-A12O3负载型固体碱催化剂,应用于棉籽油和甲醇酯交换反应制备生物柴油。对催化剂使用前的保存条件、水分、重复使用性能、游离脂肪酸影响以及失活和再生进行了分析。结果表明,固体催化剂K2CO3/γ-Al2O3具有较好的抗水性,酸度对催化剂影响明显,重复使用4次未经活化的催化剂,催化活性明显降低,催化剂应密封保存。K2CO3/γ-A12O3负载型固体碱催化剂经济实惠且催化效果良好。  相似文献   

5.
通过等体积浸渍法制备单贵金属Pt/γ-Al2O3和双金属Pt-Ce/γ-Al2O3催化剂,考察Ce对催化剂活性的影响,确定催化剂最优配比。结果表明,当Pt的负载量为质量分数0.5%时,Pt/γ-Al2O3催化活性最高;当Pt的负载量为质量分数0.2%,Ce的负载量为质量分数1.0%时,Pt-Ce/γ-Al2O3催化剂的催化活性最高。Pt-Ce/γ-Al2O3催化剂的甲苯转化率高于Pt/γ-Al2O3催化剂。随着Pt负载量增大,催化剂孔容、孔径减小。粉体式催化剂性能优于整体式催化剂,但差别不大;Ce的添加有助于催化剂活性的提升。  相似文献   

6.
刘思乐  王凯  陶洋  单译  李德豹 《工业催化》2017,25(10):70-74
以γ-Al2O3为载体,采用等体积分步浸渍法制备了以Ni为活性组分,La、Ce、Fe、Cr、Co为助剂的催化剂M/γ-Al2O3,在固定床管式反应器中研究了M/γ-Al2O3催化剂的性能,考察了反应温度、水碳比和空速对氢产率的影响,并对催化剂进行XRD、SEM和BET表征。结果表明,NiLaCeFeCrCo/γ-Al2O3催化剂具有较好的催化性能,在反应温度700 ℃、水碳物质的量比10和空速6 min-1的条件下,氢产率达到27.335 mol·mol-1,并在300 min内表现出较好的活性,平均氢产率为21.966 mol·mol-1。  相似文献   

7.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

8.
李国峰 《工业催化》1992,28(10):34-36
采用等体积浸渍法制备加氢催化剂NiMo/γ-Al2O3,在悬浮床上考察不同的制备条件下NiMo/γ-Al2O3对萘加氢生成四氢萘的影响。结果表明,催化剂的制备条件对加氢活性有显著的影响,NiMo/γ-Al2O3催化剂的最佳制备条件为共浸渍法负载金属组分Ni和Mo,在500 ℃的温度下焙烧4 h。此条件下制备的催化剂上四氢萘的选择性高达95.2%。  相似文献   

9.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

10.
In this work, different procedures, namely carbonate coprecipitation and modified solid–solid diffusion, were used to prepare hexaaluminate samples, unsupported or supported onto θ-Al2O3. These samples were used as catalyst for the methane total oxidation as synthesized or after impregnation of 1 wt% Pd. It was observed that the modified solid–solid diffusion procedure is an efficient method to obtain the hexaaluminate structure. At a theoretical ratio x of hexaaluminate onto Al2O3 less than 0.6 (xLa0.2Sr0.3Ba0.5MnAl11O19 + (1−x)·Al2O3, with x = 0.25, 0.60), samples with high specific surface area and θ-Al2O3 structure are then obtained. Large differences in catalytic activity can be observed among the series of sample synthesized. All the pure oxide samples (i.e. without palladium) present low catalytic activity for methane total oxidation compared to a reference Pd/Al2O3 catalyst. The highest activity was obtained for the samples presenting a θ-Al2O3 structure (with x = 0.60) and a high surface area. Impregnation of 1 wt% palladium resulted in an increase in catalytic activity, for all the solids synthesized in this work. Even if the lowest light-off temperature was obtained on the reference sample, similar methane conversions at high temperature (700 °C) were obtained on the stabilized θ-Al2O3 solids (x = 0.25, 0.60). Moreover, the reference sample is found to strongly deactivate with reaction time at the temperature of test (700 °C), due to a progressive reduction of the PdOx active phase into the less active Pd° phase, whereas excellent stabilities in reaction were obtained on the pure and palladium-doped hexaaluminate and supported θ-Al2O3 samples. This clearly showed the beneficial effect of the support for the stabilization of the PdOx active phase at high reaction temperature. These properties are discussed in term of oxygen transfer from the support to the palladium particle. Oxygen transfer is directly related to the Mn3+/Mn2+ redox properties (in the case of the hexaaluminate and stabilized θ-Al2O3 samples), that allows a fast reoxidation of the metal palladium sites since palladium sites reoxidation cannot occur directly by gaseous dioxygen adsorption and dissociation on the surface.  相似文献   

11.
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD), BET, temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS). The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene, pyridine, dibenzothiophene, carbazole and diesel oil as the feedstock. The TiO2, ?-Al2O3 supports and the Ni, Co promoters could remarkably increase and stabilize active W species on the catalyst surface. A suitable amount of Ni (3%–5%), Co (5%–7%) and V (1%–3%) could increase dispersivity of the W species and the BET surface area of the WP/?-Al2O3 catalyst. The WP/?-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities. The Ni, Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/?-Al2O3 catalyst. The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/?-Al2O3 catalyst. In general, a support or promoter in the WP/?-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.  相似文献   

12.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

13.
The oxidation of CH4 over Pt–NiO/δ-Al2O3 has been studied in a fluidised bed reactor as part of a major project on an autothermal (combined oxidation–steam reforming) system for CH4 conversion. The kinetic data were collected between 773 and 893 K and 101 kPa total pressure using CH4 and O2 compositions of 10–35% and 8–30%, respectively. Rate–temperature data were also obtained over alumina-supported monometallic catalysts, Pt and NiO. The bimetallic Pt–NiO system has a lower activation energy (80.8 kJ mol−1) than either Pt (86.45 kJ mol−1) and NiO (103.73 kJ mol−1). The superior performance of the bimetallic catalyst was attributed to chemical synergy. The reaction rate over the Pt–NiO catalyst increased monotonically with CH4 partial pressure but was inhibited by O2. At low partial pressures (<30 kPa), H2O has a detrimental effect on CH4 conversion, whilst above 30 kPa, the rate increased dramatically with water content.  相似文献   

14.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

15.
A new catalyst composed of nickel oxide and cerium oxide was studied with respect to its activity for NO reduction by CO under stoichiometric conditions in the absence as well as the presence of oxygen. Activity measurements of the NO/CO reaction were also conducted over NiO/γ-Al2O3, NiO/TiO2, and NiO/CeO2 catalysts for comparison purposes. The results showed that the conversion of NO and CO are dependent on the nature of supports, and the catalysts decreased in activity in the order of NiO/CeO2 > NiO/γ-Al2O3 > NiO/TiO2. Three kinds of CeO2 were prepared and used as support for NiO. They are the CeO2 prepared by (i) homogeneous precipitation (HP), (ii) precipitation (PC), and (iii) direct decomposition (DP) method. We found that the NiO/CeO2(HP) catalyst was the most active, and complete conversion of NO and CO occurred at 210 °C at a space velocity of 120,000 h−1. Based on the results of surface analysis, a reaction model for NO/CO interaction over NiO/CeO2 has been proposed: (i) CO reduces surface oxygen to create vacant sites; (ii) on the vacant sites, NO dissociates to produce N2; and (iii) the oxygen originated from NO dissociation is removed by CO.  相似文献   

16.
The pulse corona plasma has been used as an activation method for reaction of methane and carbon dioxide, the product was C2 hydrocarbons and by-products were CO and H2. Methane conversion and the yield of C2 hydrocarbons were affected by the carbon dioxide concentration in the feed. The conversion of methane increased with increasing carbon dioxide concentration in the feed whereas the yield of C2 hydrocarbons decreased. The synergism of La2O3/γ-Al2O3 and plasma gave methane conversion of 24.9% and C2 hydrocarbons yield of 18.1% were obtained at the power input of plasma was 30 W. The distribution of C2 hydrocarbons changed by using Pd-La2O3/γ-Al2O3 catalyst, the major C2 product was ethylene.  相似文献   

17.
A kind of desulfurization adsorbent, (Ni/W)-γ-Al2O3 microsphere, was prepared by a new method of in situ chemical reduction. The adsorbent consists of active components (transition metals Ni and W) and a carrier (γ-Al2O3). Ni and W in γ-Al2O3 microspheres are fine in size and can be distributed homogeneously on the surface and inside of the γ-Al2O3 carrier. The desulfurization of the adsorbent made by the in situ chemical reduction method was carried out in model gasoline. Its desulfurization capacity increases 23% in comparison with that made by the conventional impregnation method. The composition and configuration of adsorbents were analyzed by scanning electron microscopy (SEM), electron energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The in situ chemical reduction method offers a new and promising method for preparation of desulfurization adsorbents containing active components.  相似文献   

18.
采用P对NiMo/γ-Al2O3硫化物催化剂进行改性,研究P与金属组分浸渍次序对催化剂结构和硫醚化性能的影响。结果表明,P改性通过抑制金属组分与γ-Al2O3间相互作用促进金属组分硫化、增加催化剂表面金属位数量,同时P改性也提高了催化剂表面酸量。P改性前后硫化物催化剂中均形成了Ni3S2物相,但未检测到MoS2物相。先浸渍及后浸渍P组分均提高了催化剂硫醚化性能;P物种和金属组分共浸渍制备催化剂利于异戊二烯选择加氢生成异戊烯。此外,P改性催化剂酸量增加促进了烯烃聚合。总体而言,先浸渍Ni-Mo组分后浸渍P组分所制备的硫化物催化剂性能较佳。  相似文献   

19.
Monodispersed nano-Au/γ-Al2O3 catalysts for low-temperature oxidation of CO have been prepared via a modified colloidal deposition route, which involves the deposition of dodecanethiolate self-assembled monolayer (SAM)-protected gold nanoparticles (C12 nano-Au) in hexane on γ-Al2O3 at room temperature. The diameter of the gold nanoparticles deposited on the support is 2.5 ± 0.8 nm after thermal treatment, and their valence states comprise both the metallic and oxidized states. It is found that the thermal treatment temperature affects significantly the catalytic activity of the catalysts in the processing steps. The catalyst treated at 190 °C exhibits considerably higher activity as compared to catalysts treated at 165 and 250 °C. A 2.0-wt.% nano-Au/γ-Al2O3 catalyst treated at 190 °C for 15 h maintains the catalytic activity at nearly 100% CO oxidation for at least 800 h at 15 °C, at least 600 h at 0 °C, and even longer than 450 h at −5 °C. Evidently, the catalysts obtained using this preparation route show high catalytic activity, particularly at low temperatures, and a good long-term stability.  相似文献   

20.
NO reduction to N2 by C3H6 was investigated and compared over Cu-Al2O3 catalysts prepared by four different methods, namely, the conventional impregnation, co-precipitation, evaporation of a mixed aqueous solution, and xerogel methods. It was found that the catalyst preparation method as well as the Cu content exerts a significant influence on catalyst activity. For the catalysts prepared by the first three preparation methods, with the increase of Cu content from 5 to 15 wt%, the maximum NO reduction conversion decreased slightly, but the temperature for the maximum NO reduction also decreased. For the xerogel Cu-Al2O3, there was a significant decrease in NO reduction conversion with the increase of Cu content from 5 to 10 wt%. In the absence of water vapour, the Cu-Al2O3 catalyst prepared by the impregnation method exhibited the highest activity toward NO reduction. The purity of alumina support was found to be a crucial factor to the activity of the Cu-Al2O3 catalyst prepared by impregnation. In the presence of water vapour, a substantial decrease in NO conversion was observed for the Cu-Al2O3 catalysts prepared by the first three methods, especially for the impregnated Cu-Al2O3 catalyst. In contrast, the presence of water vapour showed only a minor influence on the xerogel 5 wt% Cu-Al2O3 and it showed the highest activity for NO reduction in the presence of 20% water vapour. The xerogel 5 wt% Cu-Al2O3 catalyst was also found to be less affected by a 5 wt% sulfate deposition than the Cu-Al2O3 catalysts prepared by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号