共查询到20条相似文献,搜索用时 15 毫秒
1.
采用尼龙无纺布(PNF)作为结构化增韧层,制备了PNF层间增韧改性的U3160碳纤维增强3266环氧树脂(U3160-PNF/3266)复合材料,研究了U3160-PNF/3266复合材料的面内力学性能及湿热老化后的力学性能变化,并分析了复合材料湿热老化前后的层间形貌。结果表明:PNF增韧层的引入并未导致复合材料面内力学性能的下降,与未增韧的U3160碳纤维增强3266环氧树脂(U3160/3266)复合材料相比,增韧复合材料U3160-PNF/3266的90°拉伸性能有所提高。而湿热老化处理对U3160-PNF/3266复合材料的基体和界面性能影响相对明显,尤其是尼龙纤维与树脂基体之间的界面结合性能,湿热老化处理后增韧复合材料的90°压缩和层间剪切性能保持率均明显低于未增韧复合材料的。 相似文献
2.
This work is concerned with the conditions for formation of the first (initial) cracks in composite laminates with cutouts or ply drop-offs subjected to in-plane loading. We study here the crack formation on the free edge of CFRP cross-ply laminates experimentally and by numerical stress and failure analysis. The free-edge surface strains are measured by the digital image correlation (DIC) technique. The numerical analysis consists of a two-scale approach, where the macro-level analysis is performed with a three-dimensional finite-element method (3D FEM) and the micro-level analysis uses a periodic unit-cell (PUC) in the transverse plies. The constitutive assumption made for the macro-level analysis is an orthotropic linear thermo-elastic solid for the unidirectional plies with a thin isotropic viscoplastic layer between the longitudinal and transverse plies. In the PUC, the fibers are assumed linear elastic, while the matrix is modeled as an elastic–viscoplastic solid. Crack formation is assumed to occur in the matrix by the dilatation induced brittle failure mechanism for which the dilatation energy density criterion is used. 相似文献
3.
采用尼龙无纺布(PNF)作为结构化增韧层,利用树脂传递模塑(RTM)工艺制备了PNF层间增韧改性的碳纤维增强环氧树脂基复合材料(U3160-PNF/3266),研究了U3160-PNF/3266复合材料的吸湿特性及湿热老化对其耐热性能的影响。结果表明:增韧前后复合材料具有相似的吸湿动力学特性,但在吸湿初期,U3160-PNF/3266复合材料具有更大的吸湿速率,达到饱和吸湿后,U3160-PNF/3266复合材料的饱和吸湿率约为0.96%,略大于非增韧复合材料U3160/3266的0.87%。随着湿热老化时间的增加,两种复合材料的玻璃化转变温度均逐渐降低,并随着吸湿率的饱和而趋于平稳,达到饱和吸湿后,U3160-PNF/3266和U3160/3266复合材料的玻璃化转变温度分别下降了约15%和14%。 相似文献
4.
为了揭示短纤维无纺布对碳纤维增强树脂基复合材料(CFRP)层板层间韧性的影响规律,测试了不同面密度(1.95、3.90、7.80和15.60 mg/cm2)和不同纤维平均长度(0.8 mm和4.3 mm)的碳纤维无纺布增韧的CFRP层板I型层间断裂韧性。实验结果表明:对于不同短纤维增韧的CFRP层板,平均长度为0.8mm的短纤维增韧效果优于平均长度为4.3mm的短纤维,并且面密度为7.8mg/cm2、厚度约为150μm、平均长度为0.8mm的碳纤维无纺布显著提高了CFRP层板的层间断裂韧性,与未改性的CFRP层板相比,其能量释放率最大可提高99%。光学显微镜观察结果表明环氧基体中长度为0.8mm的短纤维具有三维交织结构,该结构可以有效地阻止裂纹的扩展;SEM观察结果表明短纤维从环氧基体中的脱粘和拔出以及短纤维周围环氧基体的塑性变形是CFRP层板的主要增韧机制。研究结论为层板短纤维增韧技术的应用奠定了基础。 相似文献
5.
《Composites》1984,15(4):277-290
The Mode I delamination failure of fibre-reinforced epoxy laminates was characterized using the uniform double cantilever beam test specimen and scanning electron microscopy. Generally, this failure appeared in a variety of forms, depending on ply orientation, test-specimen geometry and matrix toughness. The calculated fracture energy heavily depended on the fracture surface morphology. By defining interlaminar fracture strictly as an interlaminar separation including no fibre breakage, pull-out, etc, a material property independent of test-specimen geometry and orientation of the plies constituting the delaminating interface was elucidated. Since this quantity dissipated the least amount of energy possible during crack growth, it is the controlling factor for laminate toughness. 相似文献
6.
The transition of delamination growth between different ply interfaces in composite tape laminates, known as migration, was investigated experimentally. The test method used promotes delamination growth initially along a 0/θ ply interface, which eventually migrates to a neighbouring θ/0 ply interface. Specimens with θ = 60° and 75° were tested. Migration occurs in two main stages: (1) the initial 0/θ interface delamination turns, transforming into intraply cracks that grow through the θ plies; this process occurs at multiple locations across the width of a specimen, (2) one or more of these cracks growing through the θ plies reaches and turns into the θ/0 ply interface, where it continues to grow as a delamination. A correlation was established between these experimental observations and the shear stress sign at the delamination front, obtained by finite element analyses.Overall, the experiments provide insight into the key mechanisms that govern delamination growth and migration. 相似文献
7.
Zahid R. Khokhar Ian A. Ashcroft Vadim V. Silberschmidt 《Computational Materials Science》2009,46(3):607-18
Due to their high specific strength and stiffness, fibre-reinforced composite materials are being increasingly used in structural applications where a high level of performance is important (e.g. aerospace, automotive, offshore structures, etc.). Performance in service of these composites is affected by multi-mechanism damage evolution under loading and environmental conditions. For instance, carbon fibre-reinforced laminates demonstrate a wide spectrum of failure mechanisms such as matrix cracking and delamination. These damage mechanisms can result in significant deterioration of the residual stiffness and load-bearing capacity of composite components and should be thoroughly investigated. The delamination failure mechanism is studied in this paper for a double cantilever beam (DCB) loaded in mode I. Several sensitivity studies are performed to analyse the effects of mesh density and of parameters of the cohesive law on the character of damage propagation in laminates. The microstructural randomness of laminates that is responsible for non-uniform distributions of stresses in them even under uniform loading conditions is accounted for in the model. The random properties are introduced with the use of Weibull’s two-parameter probability density function. Several statistical realisations are carried out which show that the effect of microstructure could significantly affect the macroscopic response emphasizing the need to account for microstructural randomness for accurate predictions of load-carrying capacity of laminate composite structures. 相似文献
8.
Liping Liu Chunliang Qi Feng Wu Jianxin Xu Xueming Zhu 《Materials and Manufacturing Processes》2018,33(6):695-708
Drilling is usually performed using twist drills while assembling the composite components. However, it is necessary to adopt appropriate tool as the risk of delamination damage is high. Many researchers have performed experimental and theoretical study concerning drilling-induced delamination damage in composites utilizing special drills. The article performed drilling experiments of glass fiber reinforced plastic laminates utilizing candlestick drills. Ten candlestick drills with different drill tip geometries were compared in thrust forces and push down delamination. The results revealed the drilling behavior of the outer cutting edges and the outer drill tips for candlestick drill, and also indicated that the push down delamination depended on exit thrust force instead of maximum thrust force. What is more, thrust forces and push down delamination were significantly reduced when holes were produced using reasonable candlestick drill tip geometry. Finally, the analysis was useful for selecting appropriate candlestick drill tip geometry and conducting candlestick drill tip geometry optimization. 相似文献
9.
During the experimental characterization of the mode I interlaminar fracture toughness of multidirectional composite laminates, the crack tends to migrate from the propagation plane (crack jumping) invalidating the tests. In an earlier numerical study [9], we reported that this problem could be eliminated by choosing the appropriate bending stiffness of the beam arms. 相似文献
10.
In previous papers the microscopic failure process of (0/90n/0) (n = 4,8,12) cross-ply laminates was investigated. Progressive damage parameters, such as the transverse crack density and the delamination ratio, were measured. A simple modified shear-lag analysis including the thermal residual strains was conducted to predict the transverse crack density and the delamination length. The analysis did not consider the interaction between the transverse cracks and the delamination. In the present paper, a prediction is presented for the transverse crack density including the effect of delamination growth. The prediction shows better agreement with the experimental results, especially for laminates with thicker 90 ° plies in which extensive delamination occurs.
Loading/unloading tests have also been performed to obtain the Young's modulus reduction and the permanent strain as functions of the damage state. The shear-lag predictions of the Young's modulus reduction and the permanent strain are compared with the experimental data. Better agreement is obtained when the interaction between transverse cracks and delamination is considered. 相似文献
11.
《Composites Science and Technology》2006,66(3-4):407-416
It is difficult to detect delamination of rotating composite components like helicopter and wind turbine blades while in-service with a wired system. In the present study, a wireless system using a tiny oscillation circuit for detecting delamination of carbon/epoxy composites is proposed. In this system, a tiny oscillation circuit is attached to the composite component. When delamination of the component occurs, electrical resistance changes, which causes a change in the oscillating frequency of the circuit. Since this system uses the composite structure itself as a sensor and the oscillating circuit is very small, it is applicable to rotating components. The electrical resistance change and oscillating frequency change due to delamination is experimentally measured using carbon/epoxy specimens. The effects of temperature changes are also measured. The wireless method is found to successfully detect embedded delamination, and to estimate the size of the delamination. The effect of temperature change is minimized by means of a temperature compensation circuit. 相似文献
12.
《Composites Part A》2007,38(9):2024-2033
In the current investigation, effects of through-the-thickness stitching with two different types of aramid threads, Kevlar® and Twaron® threads, on the buckling loads of delaminated glass/epoxy composite laminates are studied. Buckling loads are predicted based on the Southwell, Vertical displacement and Membrane strain plot methods by using the experimental data. From the Southwell, Vertical displacement and Membrane strain plot methods it is observed that stitching either by Kevlar® or Twaron® threads is effective in improving the buckling strength of glass/epoxy composite laminates when the delamination length is greater than 0.5L, L being the length of the laminate. For long delaminations, Kevlar® stitched glass/epoxy composite laminate is best in retaining its buckling strength when re-loading is done. Southwell plot method tends to overestimate the buckling loads as the data obtained from this method are influenced by the breakages in the glass/epoxy composite laminate buckling test specimens. 相似文献
13.
14.
The static failure behaviour of the fibre-metal laminate GLARE is examined using 3D finite element simulations. The configuration analysed is a centre-cracked tensile specimen composed of two aluminium layers sandwiching a cross-plied, fibre-epoxy layer. The crack and delamination growths are simulated by means of interface elements equipped with a mixed-mode damage model. The mode-mixity is derived from an energy criterion typically used in linear elastic fracture mechanics studies. The damage kinetic law is rate-dependent, in order to simulate rate effects during interfacial delamination and to avoid numerical convergence problems due to crack bifurcations. The numerical implementation of the interface damage model is based on a backward Euler approach. In the boundary value problem studied, the failure responses of GLARE specimens containing elastic aluminium layers and elasto-plastic aluminium layers are compared. The development of plastic deformations in the aluminium layers stabilizes the effective failure response, and increases the residual strength of the laminate. For a ‘quasi-brittle’ GLARE specimen with elastic aluminium layers, the residual strength is governed by the toughness for interfacial delamination, and is in close correspondence with the residual strength obtained from a closed-form expression derived from energy considerations. Conversely, for a ‘ductile’ GLARE specimen with elasto-plastic aluminium layers, the residual strength is also determined by the relation between the fracture strength and the yield strength of the aluminium. The amount of constraint by the horizontal displacements at the vertical specimen edges has a moderate to small influence on the residual strength. Furthermore, the ultimate laminate strength is lower for a larger initial crack length, and shows to be in good correspondence with experimental values. 相似文献
15.
尼龙无纺布增韧层能在保证良好工艺性能的前提下,显著提高纤维复合材料(carbon fiber reinforced polymer,CFRP)的断裂韧度,但其机制还不明晰。引入一种反映尼龙无纺布增韧层(polyamide non-woven fabric,PNF)厚度和力学特性的内聚力模型,建立PNF/CFRP复合材料分层损伤产生与扩展的力学模型,通过双悬臂梁弯曲实验和验证,得到如下结论:增韧层的厚度对复合材料Ⅰ型分层的峰值载荷几乎没有影响,增韧层厚度为20μm时,复合材料分层扩展阻力最大;界面最大法向应力分布可有效反映裂纹扩展前沿形貌,分层扩展开始后,其前沿形貌保持一致;在相同的外力载荷下,随着PNF/CFRP复合材料铺层从[012/012]变化到[012/9012],其Ⅰ型分层的峰值载荷和扩展距离不断减小。 相似文献
16.
To investigate the effect of an ocean environmental condition to Carbon Fiber Reinforced Plastics (CFRP) specimen, salt fog tests were conducted on long immersion hours. After salt fog tests, tensile test was performed to examine the durability of specimens under salt fog condition. Fabric types, fiber orientations, and different manufacturing methods were also investigated to look into effects of salt fog and tensile strength. Diverse fabric types, resin types, and manufacturing methods exhibited different experimental results. Finally, the experimental results showed the salt fog reduced the tensile strength of CFRP laminates. 相似文献
17.
Valeria La SaponaraHanifah Muliana Rami Haj-Ali George A Kardomateas 《Engineering Fracture Mechanics》2002,69(6):687-699
Delamination crack growth in laminated composites is investigated using experiments and finite element (FE) models. Tests are performed on cross-ply graphite/epoxy specimens under static conditions. The load-displacement response is monitored in the tested coupons along with crack length. The FE models employ a cohesive layer that is used to simulate the debonding and crack propagation. The cohesive parameters are calibrated from the experimental load-displacement curves. Crack growth and strain measurements are compared with those from the FE models. The predicted results from the FE models are in good agreement with the test results. The same modeling approach is also used to simulate crack propagation in the transverse direction of a notched laminate. The proposed FE analysis with cohesive layers can simplify fracture toughness assessment in multilayered specimens. 相似文献
18.
C.M. Lawrence Wu 《Composite Structures》1993,25(1-4):339-344
[0°/90°]s and [±45°]s CFRP laminated plates were analysed using a finite element formulation for their fatigue behaviour. A fatigue criterion which is based on the laminate interlaminar stresses and the basic lamina fatigue parameters was used. Thermal effects were included in the formulation. In particular, initial thermal stresses resulting from the curing of the laminate were also included in the analysis. The results showed that both laminates had predicted S-N behaviour similar to that from experiments of past investigators. Also, the fatigue behaviour for the [±45°]s laminate between room temperature and the curing temperature were found to be the same. However, in the case of the [0°/90°]s laminate the fatigue strength at high temperatures was found to be lower than that at low temperatures. 相似文献
19.
《Composites Science and Technology》2003,63(13):1885-1894
Small-diameter FBG sensors were applied for the detection of edge delamination in carbon fiber reinforced plastic (CFRP) quasi-isotropic laminates. Reflection spectra from the embedded fiber Bragg grating (FBG) sensor were measured at various lengths of delamination initiated from the edge of the specimen under cyclic loading. The form of the spectrum changed sensitively as the edge delamination grew. For confirmation of the measured results, the strain distribution in the FBG sensor was calculated by FEM analysis and the spectrum was simulated from the strain distribution theoretically. The change in the form of the measured spectrum was consistent with that of the calculated spectrum. From these results, the spectrum was found to depend on the size and location of the edge delamination. Moreover, the intensity ratio of the two peaks in the spectrum was proposed as an effective indicator for the quantitative evaluation of the edge delamination size. 相似文献
20.
首先,针对斜接修补CFRP抗冲击性能差的问题,分别使用基于接触的内聚力模型(SCZM)和基于单元的内聚力模型(ECZM)描述层间分层和斜接胶层破坏,研究CFRP层板的冲击响应和两种失效的演化规律。然后,分析了冲击能量、斜接角度和预拉伸作用对两种失效的影响。结果表明:层间分层起始时间早于胶层破坏,与冲击能量无关;分层和胶层破坏面积随冲击能量增加而增大,胶层破坏面积增加的更明显;斜接角度主要影响胶层破坏,对分层面积几乎无影响;预拉伸作用对两种失效均具有负面作用。最后,进一步讨论分层对胶层破坏的影响,通过与只考虑胶层破坏的情况进行对比,发现层间分层使胶层破坏的面积降低,延缓了胶层的最终失效。 相似文献