首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of concrete structures due to chlorides and sulphates penetration is of obvious importance in civil engineering as having major impact on structural durability. In this paper, the results of an investigation on the effect of contaminated crushed concrete aggregates on mechanical properties and durability of recycled concrete are presented. Natural aggregates concrete (NC) slabs were cured in water, sea water, chloride solutions or sulphate solutions and then crushed to obtain virgin and contaminated (polluted) recycled aggregates. The properties of natural (NA) and recycled aggregates (RA) and the mechanical properties and durability performances of a new concrete made from 100% of RA are analysed. The results show that contaminated RA are much sensitive to chlorides than sulphates and are rapidly leached when soaked into water. Significant differences were observed between the properties of original and new concrete and the results clearly show the necessity of taking these contaminations into account.  相似文献   

2.
There is a growing interest of using recycled crushed glass (RCG) as an aggregate in construction materials especially for non-structural applications. Although the recycled crushed glass is able to reduce the water absorption and drying shrinkage in concrete products due to its near to zero water absorption characteristics, the potential detrimental effect of using glass due to alkali–silica reaction (ASR) in cementitious materials is a real concern. The extent of ASR and its effect on concrete paving blocks produced with partial replacement of natural aggregates by crushed glass cullet are investigated in this study. This study is comprised of two parts. The first part quantified the extent of the ASR expansion and determined the adequate amount of mineral admixtures that was needed to reduce the ASR expansion for concrete paving blocks prepared with different recycled crushed glass contents using an accelerated mortar bar test in accordance with ASTM C 1260 (80 °C, 1 N NaOH solution). In the second part, concrete paving blocks were produced using the optimal mix proportion derived in the first part of this study and the corresponding mechanical properties were determined.It was found from the mortar bar test that the incorporation of 25% or less RCG induced negligible ASR expansion after a testing period of 28 days. For mixes with a glass content of higher than 25%, the incorporation of mineral admixtures such as pulverized fuel ash and metakaolin was able to suppress the ASR expansion within the stipulated limit but the results need to be confirmed by other test methods such as the concrete prism test.The study concluded that the optimal mix formulation for utilizing crushed waste glass in concrete paving blocks should contain at least 10% PFA by weight of the total aggregates used.  相似文献   

3.
Many environmental problems caused by the large volumes of construction and demolition waste (C&DW), the lack of adequate deposition sites and the shortage of natural resources have led to the use of C&DW as replacement of natural aggregates in the production of new concrete. As in the case of natural aggregates, when recycled aggregates are used to manufacture structural concrete, the assessment of their physical, mechanical and durable characteristics is a key issue. The different physical and mechanical properties of the recycled coarse aggregate (RCA) are evaluated. RCA was obtained by crushing conventional concretes with different strength levels (different w/c ratios) containing four different types of natural coarse aggregates (three crushed stones and a siliceous gravel), which differ in shape, composition and surface texture. There is a significant influence of the natural coarse aggregate (NCA) on the properties of RCA, which in many cases is greater than that of the w/c ratio of the source concrete.  相似文献   

4.
This study presents the fresh properties of concrete with supplementary cementitious materials (SCM) and recycled concrete aggregates (RCA), with emphasis on the feasibility of using high volumes of fly ash (FA) in RCA concrete. For this purpose, two mix families (0% coarse RCA and 100% coarse RCA) were produced, both with and without superplasticizers (SP). The coarse natural aggregates (NA) were replaced with coarse RCA at 0% and 100%, respectively. For each of the mentioned families, three incorporation levels (0%, 50% and 100%) of fine RCA were used with 0%, 30% and 60% of FA, resulting in 28 compositions. Each mix was tested in the fresh state by means of slump, density and air content. The results of this study show that RCA decreased the slump of concrete mixes, but the required water content can be minimized by incorporation FA. Regardless of the water absorption of the aggregates, for a given fine RCA incorporation ratio and the same ratio of FA, no increase in water content is required to obtain the same target slump as in the reference concrete. On the other hand, for a given coarse RCA incorporation ratio, a five times lower FA ratio is enough to obtain the same target slump as in the reference concrete. Air voids in concrete mixes were more affected by the shape of the aggregates than by their water absorption. The air content of concrete mixes increased as the incorporation levels of FA and RCA increased. However, in comparison with the individual effects, the air content decreased by combining the incorporation of both FA and RCA. Moreover, the rate of reduction in fresh density by increasing the incorporation of RCA and FA was similar in concrete mixes with and without SP.  相似文献   

5.
An accelerated carbonation technique was employed to strengthen the quality of recycled concrete aggregates (RCAs) in this study. The properties of the carbonated RCAs and their influence on the mechanical properties of new concrete were then evaluated. Two types of RCAs, an old type of RCAs sourced from demolished old buildings and a new type of RCAs derived from a designed concrete mixture, were used. The chosen RCAs were firstly carbonated for 24 h in a carbonation chamber with a 100% CO2 concentration at a pressure level of 0.1 Bar and 5.0 Bar, respectively. The experimental results showed that the properties of RCAs were improved after the carbonation treatment. This resulted in performance enhancement of the new concrete prepared with the carbonated RCAs, especially an obvious increase of the mechanical strengths for the concrete prepared with the 100% carbonated new RCAs. Moreover, the replacement percentage of natural aggregates by the carbonated RCAs can be increased to 60% with an insignificant reduction in the mechanical properties of the new concrete.  相似文献   

6.
The present investigation is conducted to evaluate the effect of steel slag coarse aggregates on mechanical properties and fatigue behaviour of Alkali-Activated Slag Fly Ash Concrete (AASFC) mixes. AASFC mixes were prepared with steel slag coarse aggregates by replacing natural coarse aggregates at various replacement levels (0, 25, 50, 75 and 100% by volume). Various mechanical properties and fatigue performance were tested and compared with conventional Portland concrete. The incorporation of steel slag aggregates resulted in decrease in mechanical strength of AASFC mixes. The fatigue lives of AASFC mixes containing steel slag were found to be lower than AASFC with natural coarse aggregates. Two-parameter Weibull distribution was used for statistical analysis of fatigue data and it was observed that the fatigue data of concrete mixes can be approximately modelled using Weibull distribution. Steel slag aggregates reported acceptable performance in AASFC mixes for its use in pavement quality concrete.  相似文献   

7.
Very few studies on recycled aggregate concretes (RC) have been extended to the use of recycled ceramic and mixed aggregates in relation with high strength concretes. In the main they concentrate only on the analysis of the physical and mechanical properties. This study deals with the investigation of the influence that different percentages (up to 30% substitution for natural aggregates) of high porous ceramic and mixed recycled aggregates have over the plastic, autogenous and drying shrinkage of the concretes. The physical and mechanical properties as well as the chloride resistance were also determine in order to assess the viability of the use of ceramic and mixed recycled aggregates in high strength concretes. The results revealed that the employment of highly porous recycled aggregates reduced the plastic and autogenous shrinkage values of the concrete with respect to those obtained by conventional concrete (CC). Although the total drying shrinkage of the recycled concrete proved to be 25% higher than that of the CC concrete, the CC concrete had in fact a higher shrinkage value than that of the RC from 7 to 150 days of drying. It can be concluded that the RC concrete produced employing up to 30% of fine ceramic aggregates (FCA, with 12% of absorption capacity) achieved the lowest shrinkage values and higher mechanical and chloride ion resistance. In addition, the concrete produced with low percentage (10–15%) of recycled mixed aggregates also had similar properties to conventional concrete.  相似文献   

8.
Among the transport phenomena, water absorption, water permeability and shrinkage prove to be of primary and great importance for the evaluation of durability of recycled concrete with coarse and fine recycled aggregates. Either coarse aggregates, fine aggregates or both coarse and fine aggregates were partially replaced (25, 50, 75 and 100%) with crushed concrete and brick aggregates. The results indicate that water absorption is high and water permeability can be double that of concrete made with 100% natural aggregate concrete. This study also showed that recycled concrete mix having the highest water absorption and water permeably corresponds always to the mix with the highest shrinkage. The physical and mechanical properties of recycled concretes seem to be acceptable.  相似文献   

9.
This paper presents an experimental study on the properties and on the durability of concrete containing ceramic wastes. Several concrete mixes possessing a target mean compressive strength of 30 MPa were prepared with 20% cement replacement by ceramic powder (W/B = 0.6). A concrete mix with ceramic sand and granite aggregates were also prepared as well as a concrete mix with natural sand and coarse ceramic aggregates (W/B = 0.5). The mechanical and durability performance of ceramic waste based concrete are assessed by means of mechanical tests, water performance, permeability, chloride diffusion and also accelerated aging tests. Results show that concrete with partial cement replacement by ceramic powder although it has minor strength loss possess increase durability performance. Results also shows that concrete mixtures with ceramic aggregates perform better than the control concrete mixtures concerning compressive strength, capillarity water absorption, oxygen permeability and chloride diffusion. The replacement of cement and aggregates in concrete by ceramic wastes will have major environmental benefits.  相似文献   

10.
This paper presents the main results of a research carried out to analyze the mechanical properties, intrinsic permeability, drying shrinkage, carbonation, and the self-healing potential of concrete incorporating recycled concrete aggregates. The recycled concrete mixtures were designed by replacing natural aggregates with 0%, 30%, and 100% of recycled concrete gravel (RG) and 30% of recycled concrete sand (RS). The water to equivalent binder ratio was kept constant and recycled concrete aggregates were initially at saturated surface dried (SSD) state. The contribution of the porosity of natural and recycled aggregates to the porosity of concrete was estimated to understand the evolution of the intrinsic permeability and the open porosity. At long term, the maximum variation of drying shrinkage magnitude due to recycled concrete gravels did not exceed 15%. The correlation between drying shrinkage and mass-loss through “drying depth” concept showed that recycled concrete aggregates are affected by drying as soon as concrete is exposed to desiccation. A good correlation between 1-day compressive strength and 18-month carbonation depth was observed. The recycled concrete aggregates presented a good potential for self-healing as the relative recovery of cracks reached up to 60%.  相似文献   

11.
Lightweight concrete in hot coastal areas   总被引:5,自引:0,他引:5  
An experimental study was carried out to examine different mixtures made with selected lightweight aggregates for the purpose of producing lightweight concrete. A relatively suitable product is sought in order to provide good quality building materials that can satisfy the conditions of hot coastal environments. Three ways of producing lightweight concrete were used, i.e., lightweight crushed bricks, lightweight expanded clay aggregate (LECA), and no-fines concrete. Physical and mechanical properties of the mixtures were examined to ascertain the suitability and applicability of the three concretes. The results of this pilot study suggest that there are possibilities of producing structural lightweight concrete using crushed bricks with the condition of further refinements in the mixture design.  相似文献   

12.
The growing difficulty in obtaining natural coarse aggregates (NCA) for the production of concrete, associated to the environmental issues and social costs that the uncontrolled extraction of natural aggregates creates, led to a search for feasible alternatives. One of the possible paths is to reuse construction and demolition waste (CDW) as aggregates to incorporate into the production of new concrete. Therefore, a vast and detailed experimental campaign was implemented at Instituto Superior Técnico (IST), which aimed at determining the viability of incorporating coarse aggregates from concrete and ceramic brick wall debris, in the production of a new concrete, with properties acceptable for its use in new reinforced and pre-stressed structures. In the experimental campaign different compositions were studied by incorporating pre-determined percentages of recycled coarse concrete aggregates and recycled coarse ceramic plus mortar particles, and the main mechanical, deformability and durability properties were quantified, by comparison with a conventional reference concrete (RC). In this article, these results are presented in terms of the durability performance of concrete, namely water absorption, carbonation and chlorides penetration resistance.  相似文献   

13.
The study presents the influence of characteristics of four aggregate types (two sintered lightweight fly ash aggregates, cold-bonded lightweight fly ash aggregate and normalweight crushed limestone aggregate) on the strength and elastic properties of concrete mixtures. Different models were also used in order to predict the strength and modulus of elasticity values of concretes. The results of this study revealed the achievement of manufacturing high-strength air-entrained lightweight aggregate concretes using sintered and cold-bonded fly ash aggregates. In order to reach target slump and air content, less amount of chemical admixtures was used in lightweight concretes than in normal-weight concrete, leading to reduction in production cost. The use of lightweight aggregates (LWA) instead of normalweight aggregates in concrete production slightly decreased the strength. The models given by codes, standards and software and equation derived in this study gave close estimated values to the experimental results.  相似文献   

14.
This research aims at evaluating the main risks for the durability of concrete made of industrially produced recycled aggregates called Recycled Aggregate Concrete (RAC). A characterisation of recycled aggregates is performed and their peculiarities are highlighted. A comparison between the behaviour of RAC and that of ordinary natural aggregate concrete is carried out. The influence of both the composition and the curing conditions is discussed. The durability study is focused on the assessment of parameters representing the porous structure and concrete characteristics. Because of the high total water/cement ratio of RAC, their flow properties control their durability. It is established that RAC are characterised by significantly higher water absorption and air permeability. The diffusion of the carbon dioxide is faster, too. That leads to a weaker resistance of RAC to environmental attacks. Since the main durability problems are caused by the fine recycled fraction, its use needs to be restricted. Another way to increase RAC durability seems to be the extended curing in wet environment.  相似文献   

15.
Concrete is a composite, and its properties depend on the properties of the component phases and the interaction between them. It is known that the interfaces are the weakest link in concrete, playing a very important role in the process of failure. This process is strongly related with the characteristics of the aggregates (especially coarse aggregates) and with the relative differences in strength between matrix and inclusions. This paper analyzes the mechanical behavior of high strength and conventional concretes prepared with coarse aggregates having significant differences in strength, shape and surface texture, porosity and absorption, and interface bond strength. Two different gravels and two different crushed stones were used. Concrete mixtures with water/cement ratios of 0.30 and 0.50 were designed. The effects of aggregate type and strength level on concrete failure mechanism, including tensile and compressive strength, stiffness, energy of fracture, and crack pattern, are discussed.  相似文献   

16.
Coarse and fine aggregates generated from crushed concrete products for new concrete can be generally accepted only when the properties of recycled aggregate concrete, in addition to the relationships between different properties of such a concrete, are well understood. The results of an experimental investigation into the relationship of compressive strength to ultrasonic pulse velocity and to rebound number is presented in this paper. It has been observed that for the water-cured concrete the strength-pulse velocity relationship is influenced by the use of the recycled aggregate. For the same value of the pulse velocity, the strength of recycled aggregate concrete is higher than that for the natural aggregate concrete. On the other hand, the strength-rebound number relationship is not affected by the aggregate type used. The combined method of pulse velocity and rebound number for strength estimation is also evaluated.  相似文献   

17.
颗粒整形对再生粗骨料性能的影响   总被引:19,自引:1,他引:18  
为了有效提高再生粗骨料的性能,必须对再生骨料进行机械强化处理.首次提出了利用高速(线速度≥80m/s)运动的再生骨料之间的反复相互冲击与摩擦作用,有效地打掉较为突出的棱角和除去颗粒表面附着的砂浆和水泥石的一种新技术.研究表明:颗粒整形使再生骨料的颗粒堆积密度平均提高了9.3%、表观密度从2.56g/cm3提高到2.59g/cm3、空隙率从53.3%降至48.5%、吸水率从4.7%降至2.9%、压碎指标值从15.8%降至9.4%,而且堆积密度、密实密度和针片状骨料含量等指标均优于天然碎石骨料,完全能够满足配制普通混凝土的要求.  相似文献   

18.
This paper concerns the use of fine recycled concrete aggregates to partially or globally replace natural fine aggregates (sand) in the production of structural concrete. To evaluate the viability of this process, an experimental campaign was implemented in order to monitor the mechanical behaviour of such concrete. The results of the following tests are reported: compressive strength, split tensile strength, modulus of elasticity and abrasion resistance. From these results, it is reasonable to assume that the use of fine recycled concrete aggregates does not jeopardize the mechanical properties of concrete, for replacement ratios up to 30%.  相似文献   

19.
A laboratory examination of the effects of coarse aggregate type and size on the mechanical properties of concrete is presented, in an effort to develop more cost-efficient mixes for pavements and other highway structures. Aggregate blending is used to generate the required coarse aggregate gradations. Six different concrete mixes are prepared, using three different coarse aggregate gradations, along with two different aggregate types, natural and crushed. Test results show that coarse aggregate properties often do not have a significant effect on the mechanical properties of concrete. When significant differences are observed, these are confounded by variability issues related to the testing protocols themselves, and by mineralogical distinctions among the various aggregate blends.  相似文献   

20.
Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage; carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates – sand – with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号