首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluates the possibility of measuring the damage of the recycled concrete. In this way, two conventional concretes with a w/c ratio of 0.55 and 0.65 were designed. Based on them, six recycled concretes with different percentages of replacement of natural coarse aggregates with recycled coarse aggregate (20, 50 and 100%) were obtained. To take into account the high absorption capacity of the recycled aggregates, before using them they were pre-wetted for 10 min. The results concluded that scalar damage mechanics (based on the variations of the elastic modulus) and volumetric strains curves can be use to quantify the damage of the recycled concrete. The results from both approaches indicated that the damage to concrete depended on the percentage of replacement, increasing with higher replacement percentages. Additionally, values of the damage, that are quantified using the critical stress and according to the scalar damage mechanics, are given.  相似文献   

2.
杨海涛  田石柱 《功能材料》2013,(17):2524-2527
采用再生粗骨料配制强度在50MPa或更大的高强再生骨料混凝土,并对其变形能力和耐久性进行测定,为高强再生骨料混凝土在工程上的应用提供理论和实验基础。通过一系列的抗压实验确定再生粗骨料的强度极限,并通过对水灰比的调整,使配制的高强再生骨料混凝土在强度上达到设计值,并以再生粗骨料取代率为0、30%、50%、80%和100%的高强再生骨料混凝土为研究对象进行实验。当再生粗骨料取代率为30%时,对再生混凝土的强度影响不大;之后混凝土强度随再生骨料的增加而降低。高强再生骨料混凝土与天然混凝土在耐久性上具有相似的性能,可以将高强再生混凝土应用于工程中。  相似文献   

3.
针对研究5种不同土工合成材料与再生混凝土骨料(RCA)之间的界面循环剪切及后直剪特性,在不同法向应力与循环剪切幅值条件下进行了一系列单调直剪(MDS)、循环直剪(CDS)、后循环直剪(PCDS)试验,并综合对比分析了后循环直剪与单调直剪试验结果.试验结果表明,在循环直剪作用下,5种筋-土界面呈现出明显的剪切硬化现象,剪...  相似文献   

4.
5.
Laboratory tests are performed to investigate the effects of a new method of mixture proportioning on the creep and shrinkage characteristics of concrete made with recycled concrete aggregate (RCA). In this method, RCA is treated as a two component composite material consisting of residual mortar and natural aggregate; accordingly, when proportioning the concrete mixture, the relative amount and properties of each component are individually considered. The test variables include the mixture proportioning method, and the aggregate type. The results show that the amounts of creep and shrinkage in concretes made with coarse RCA, and proportioned by the new method, are comparable to, or even lower than, those in similar concretes made entirely with natural aggregates. Furthermore, it is demonstrated that by applying the proposed “residual mortar factor” to the existing ACI and CEB methods for calculating creep or shrinkage of conventional concrete, these methods could be also applied to predict the creep and shrinkage of RCA-concrete.  相似文献   

6.
传统再生细骨料的需水量大、强度低,较难利用。将废弃混凝土全部破碎成细骨料的全再生细骨料技术能够有效提高再生细骨料的性能。在前期研究的基础上,进行了全再生细骨料的制备及其对混凝土性能影响的研究。研究结果表明,全再生细骨料的制备应包括破碎、筛分和整形工艺;全再生细骨料中小于0.075和0.15mm的细粉对其强度性能有利,不宜去除;考虑到其细粉组成包括石粉,其微粉含量限值可较现有标准有所提高。全再生细骨料相对于传统再生细骨料在性能上有很大改善,胶砂需水量小且强度高,以其配制的C30和C50混凝土性能明显优于传统再生细骨料。全再生细骨料的胶砂需水量等性能仍不如机制砂和河砂,但其胶砂强度却高于机制砂和河砂;以其配制的混凝土抗压强度(特别是高水胶比时)明显高于河砂和机制砂混凝土,但工作性能略低。综合来看,全再生细骨料能够全取代河砂和机制砂用于制备C30和C50混凝土。  相似文献   

7.
Use of recycled concrete aggregate in high-strength concrete   总被引:16,自引:0,他引:16  
The results of a test programme to study the use of recycled concrete aggregate (RCA) in high-strength, 50 N/mm2 or greater, concrete are described. The effects of coarse RCA content on the ceiling strength, bulk engineering and durability properties of such concretes have been established. The results showed that up to 30% coarse RCA had no effect on concrete strength, but therafter there was a gradual reduction as the RCA content increased. A method of accommodating the effects of high RCA content, involving simple adjustment to water/cement ratio of the mix is given. It is shown that high-strength RCA concrete will have equivalent engineering and durability performance to concrete made with natural aggregates, for corresponding 28-day design strengths. The practical implications of the study for concrete construction are discussed.
Résumé Sont décrits ici les résultats d’une série d’essais destinés à étudier l’utilisation de granulats provenant du recyclage d’éléments en béton (RCA) dans des bétons de haute résistance (50 MPa et plus). Les effets de la teneur en gros granulats recyclés sur la résistance des plafonds et des batiments, ainsi que les propriétés de tels bétons ont été établis. Les résultats ont montré qu’une teneur allant jusqu’à 30% en gros granulats recyclés n’a pas d’effet sur la résistance du béton, mais qu’au dessus de 30%, la résistance diminue progressivement à mesure que la teneur en gros granulats recyclés augmente. Une méthode visant à accommoder les effets dus à une forte proportion de RCA, nécessitant un simple ajustement du rapport eau/ciment dans le mélange, est proposée. Il est prouvé que le béton RCA de haute résistance aura des qualités de résistance et de durabilité équivalentes à celles de bétons constitués de granulats naturels, pour les résistances mécaniques à 28 jours prévues. Les implications pratiques de l’étude sur la réalisation d’ouvrages en béton sont présentées.
  相似文献   

8.
Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.  相似文献   

9.
The increase in drying shrinkage and decrease in tensile properties of concrete proportioned with recycled concrete aggregate (RCA) can result in a high risk of cracking under restrained conditions. However, the reduction of the modulus of elasticity of such concrete, can lead to greater stress relaxation and reduction in cracking potential. An experimental program was undertaken to evaluate the effect of using RCA at high substitution rates of 50 and 100% (by vol.) on the cracking potential under restrained conditions. Four different types of coarse RCA, two binder types, and water-to-cementitious materials ratio (w/cm) of 0.37 and 0.40 were considered in the study. Mechanical properties, drying shrinkage, and cracking potential using the ring test were investigated. Test results indicated no cracking up to 35 days in the case of the reference mixture and the concrete prepared with 50% RCA replacement. The 28-day stress rate of such mixtures were limited to 0.12 MPa/day. Depending on the RCA type, the incorporation of 100% coarse RCA in a binary system made with 0.40 w/cm increased the 35-day cracking potential to up to 74%, with values of stress rate ranging from 0.25 to 0.34 MPa/day. The mixtures proportioned with 100% RCA developed tensile creep coefficient of 0.34–0.78 at the time of cracking compared to 0.34–0.36 for the reference concrete at the same age. However, greater elastic concrete strain and lower tensile strength resulted in reduced time to cracking at 100% RCA replacement, which was 9.0–11.0 days.  相似文献   

10.
11.
This paper presents the experimental results of a study on comparing the difference in properties of recycled aggregates (RAs) with varying amounts of old adhered mortar obtained from different sources and evaluating the influence of the different RAs on the mechanical and durability properties of recycled aggregate concrete (RAC). Four concrete mixes (one with natural aggregate and three others with recycled aggregates) with 28 day target compressive strength varying from 30 MPa to 80 MPa are designed by using each RA to fully replace NA. The properties of RAC are also modeled by using the artificial neural networks (ANN) method.The experimental results show that the performance of RAs from different sources varied greatly and RA of good quality can be used to produce high strength concrete with hardened properties comparable to those of the corresponding natural aggregate concrete (NAC). The comparison of the predicted results based on the ANN models and the experimental values indicated that the ANN method could be used to evaluate the properties of RAC made with RAs derived from different sources. This will facilitate the wider application of RA in concrete.  相似文献   

12.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

13.
14.
Recycling concrete construction waste is a promising way towards sustainable construction. Coarse recycled concrete aggregates have been widely studied in recent years, however only few data have been reported on the use of fine recycled aggregates. Moreover, a lack of reliable data on long-term properties of recycled aggregate concrete has to be pointed out.In this paper the effects of both fine and coarse recycled concrete aggregates on short and long-term mechanical and physical properties of new structural concrete are investigated. The studied concrete mixes have been designed by adjusting and selecting the content and grain size distribution of concrete waste with the goal to obtain medium–high compressive strength with high content of recycled aggregates (ranging from 27% to 63.5% of total amount of aggregates).Time-dependent properties, such as shrinkage and creep, combined with porosity measurements and mechanical investigations are reported as fundamental features to assess structural concrete behavior.  相似文献   

15.
The main aim of this work was to determine creep and shrinkage variations experienced in recycled concrete, made by replacing the main fraction of the natural aggregate with a recycled aggregate coming from waste concrete and comparing it to a control concrete. It was possible to state that the evolution of deformation by shrinkage and creep was similar to a conventional concrete, although the results after a period of 180 days showed the influence of the substitution percentage in the recycled aggregates present in the mixture. In the case when 100% coarse natural aggregate was replaced by recycled aggregate there was an increase in the deformations by creep of 51% and by shrinkage of 70% as compared to those experienced by the control concrete. The substitution percentages of coarse natural aggregate by coarse recycled aggregate were 20, 50 and 100%. Fine natural aggregate was used in all cases and the amount of cement and water–cement ratio remained constant in the mixture.  相似文献   

16.
The effects of recycled glass (RG) cullet on fresh and hardened properties of self-compacting concrete (SCC) were investigated. RG was used to replace river sand (in proportions of 10%, 20% and 30%), and 10 mm granite (5%, 10% and 15%) in making the SCC concrete mixes. Fly ash was used in the concrete mixes to suppress the potential alkali-silica reaction. The experimental results showed that the slump flow, blocking ratio, air content of the RG–SCC mixes increased with increasing recycled glass content. The compressive strength, tensile splitting strength and static modulus of elasticity of the RG–SCC mixes were decreased with an increase in recycled glass aggregate content. Moreover, the resistance to chloride ion penetration increased and the drying shrinkage of the RG–SCC mixes decreased when the recycled glass content increased. The results showed that it is feasible to produce SCC with recycled glass cullet.  相似文献   

17.
As more than 50% construction and demolition (C&D) wastes are composed of concrete debris in Hong Kong, recycling this debris into Recycled Aggregate (RA) for production of Recycled Aggregate Concrete (RAC) is an efficient way to alleviate the burden on landfill areas. Since RA is generated from concrete debris which has undergone years of services, the resulting RAC bears the weaknesses of lower density, higher water absorption, and higher porosity that limit them to lower-grade applications. Pinpointing to these weaknesses, Tam et al. [2005, Cement Concrete Res 35(6):1195–1203] developed the Two-Stage Mixing Approach (TSMA) for improving the strength of RAC, leading to the possibility in applying RAC for higher-grade applications. While the improvement in strength by TSMA has been proven in Tam et al.’s work [2005, Cement Concrete Res 35(6):1195–1203], the durability, in terms of deformation (shrinkage and creep) and permeability (water, air and chloride permeability), remains to be verified. In this paper, 0%, 20% and 100% of RA substitutions have been experimented to compare the durability performance of the Normal Mixing Approach (NMA) and the TSMA. Experiment results highlight that: (i) the higher the substitutions of RA, the weaker the performance of RAC; and (ii) the deformation and permeability of RAC can be enhanced when adopting TSMA. Therefore, it demonstrates that TSMA can help to improve the durability of RAC, on top of the previously verified strength improvement, and thus opening up wider applications of RAC.  相似文献   

18.
19.
This research aims to study the effect of ground fly ash (GFA) and ground bagasse ash (GBA) on the durability of recycled aggregate concrete. Recycled aggregate concrete was produced with recycled aggregate to fully replace crushed limestone in the mix proportion of conventional concrete (CON) and GFA and GBA were used to partially replace Portland cement type I at the rate of 20%, 35%, and 50% by weight of binder. Compressive strength, water permeability, chloride penetration depth, and expansion by sulfate attack on concretes were investigated.The results reveal that the use of GFA and GBA to partially replace cement in recycled aggregate concrete was highly effective in improving the durability of recycled aggregate concrete. The suitable replacement of GFA or GBA in recycled aggregate concrete to obtain the suitable compressive strength, low water permeability, high chloride penetration resistance, and high sulfate resistance is 20% by weight of binder.  相似文献   

20.
Past research indicates that recycled aggregate concrete (RAC) could be successfully used in concrete-filled steel tubular (CFST) columns. Their yielded performance is almost as good as that of the traditional CFST columns. In addition, as a comparatively new construction material, stainless steel can be used to replace carbon steel for enhancing the durability and ductility of CFST columns. With an aim to combine the advantages of both RAC and stainless steel, RAC is proposed in this paper to be used as a filling material for stainless steel tubes. A test program is introduced in this paper to investigate the behaviour of RAC-filled stainless steel stub columns. For comparison purposes, reference specimens with carbon steel tubes are also tested. In the end, finite element analysis is conducted to simulate the current test results and those reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号