首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
蔡艳华 《材料导报》2013,27(14):93-95
为制备具有功能性的聚乳酸复合材料,以聚L-乳酸(PLLA)和α-环糊精(α-CD)为原料,通过熔融共混技术制备PLLA/α-CD复合材料。研究结果显示α-CD促进了PLLA的结晶,提高了PLLA的结晶速率,但材料变脆;而PLLA/α-CD复合材料非等温结晶后的熔融行为则地受到降温速率的强烈影响,降温速率的增加使得PLLA/α-CD复合材料由单熔融峰转变为双熔融峰。热分解性能研究结果则表明添加α-CD能使PLLA的热分解温度升高。  相似文献   

2.
研究了中等分子量(-Mη=1.10×105)的聚D,L-乳酸在体外不同环境中的可降解性能,包括不同pH值溶液(37℃)和自然土壤。降解性能采用失重率、分子量变化、溶液pH值变化等来进行评价,并对试样表面形貌采用扫描电镜(SEM)进行了观察。结果表明:聚D,L-乳酸在体外环境中具有良好的可降解性,受降解环境的影响较大;失重和分子量的减小并不平行;在不同pH值溶液和土壤中的分子量变化在一定时间内符合一级反应动力学,且随溶液pH值的增大,降解速率减小。  相似文献   

3.
聚甲基丙烯酸甲酯/二氧化硅(PMMA/Si O_2)复合材料可以通过简便的单体浇铸、本体聚合方法制备,二氧化硅用硅烷偶联剂3-(异丁烯酰氧)丙基三甲氧基硅烷(γ-MPS)进行表面修饰,并用红外光谱表征其甲苯抽提后的组成。当加入量为11.76%时,PMMA/Si O_2复合材料的导热率达到0.23 W/(m·K),比基体PMMA提高了27.78%。用PMMA红外光谱的侧甲基弯曲振动峰(δCH3)与羰基(νC=O)的伸缩振动峰比值可以表示PMMA大分子的偶合终止与歧化终止的比例,随着二氧化硅含量的增加,歧化终止比例升高,从而使PMMA/Si O_2复合材料的热稳定性提高,与热重分析结果一致。  相似文献   

4.
通过酸解法制备了具有纳米尺寸和一定长径比针棒状的纳米纤维素晶须(NCW),利用NCW表面的羟基引发L-丙交酯开环聚合,合成了表面接枝聚(L-乳酸)(PLLA)链段的接枝纤维素晶须(g-NCW);采用溶液浇铸法制备了PLLA膜以及不同配比的NCW/PLLA和g-NCW/PLLA复合膜。对接枝改性前后的NCW的形貌与性能进行了表征,研究了复合膜的形貌、结晶性能、热稳定性、亲/疏水性和拉伸性能。结果表明:NCW的形貌与结晶性能在接枝改性后变化不大,但在乙醇和PLLA溶液中的分散性得到明显改善;当NCW与L-丙交酯的物质的量之比为1∶5时,g-NCW表面PLLA链段的接枝率约为23.61%。NCW和g-NCW作为异相成核剂,显著提高了PLLA基体的结晶速率;并且,加入晶须改善了材料的亲水性和热稳定性。添加一定量的NCW和g-NCW到PLLA中,可有效增强增韧PLLA基体;随着晶须含量增加,复合膜的拉伸强度和断裂能先增大后下降;当NCW和g-NCW的质量分数为5%时,NCW/PLLA和g-NCW/PLLA复合膜的拉伸强度和断裂能分别达到22.02 MPa和20.01 MPa以及102.39J/m~3和117.83J/m~3,均达到最大值。由于g-NCW在基体中良好的分散性以及与基体间的界面结合,g-NCW/PLLA复合膜的拉伸强度和韧性明显优于相应的纯PLLA和NCW/PLLA膜。  相似文献   

5.
聚L-乳酸的固态缩聚   总被引:5,自引:0,他引:5  
采用熔融 /固态缩聚方法制备了聚L 乳酸。考察了不同催化剂、反应温度、反应时间和预聚物颗粒大小对固态缩聚反应速度的影响。结果表明 ,利用真空干燥箱 ,在适宜的反应条件下反应 ,有利于最终聚合物分子量的控制。  相似文献   

6.
7.
聚L-乳酸/聚丁二烯基聚氨酯的合成与表征   总被引:1,自引:0,他引:1  
刘炼  魏志勇  高军  齐民 《功能材料》2007,38(3):423-426
以乙二醇和L-乳酸熔融直接缩聚制备双端羟基聚L-乳酸预聚物(PLLA),并用1H、13C-NMR、DSC、XRD对PLLA结构和性能分析表征.以液化二苯基甲烷二异氰酸酯(MDI)为偶联剂,端羟基聚L-乳酸和端羟基聚丁二烯(HTPB)偶联反应制备橡胶改性聚乳酸基聚氨酯弹性体,并用FT-IR,1H、13C-NMR对聚合产物进行结构表征确认.DSC测试结果表明聚氨酯有聚丁二烯段和聚乳酸段两个玻璃化转变温度,熔融温度基本在130℃.随着聚丁二烯含量的增加,结晶衍射峰逐渐消失,聚氨酯的拉伸强度降低,断裂伸长率增加.断面扫描电镜结果显示聚氨酯呈微相分离结构和弹性断裂.  相似文献   

8.
以L-乳酸为原料,熔融缩聚法直接合成聚L-乳酸.考察了预聚工艺、催化剂配比及用量、反应温度、反应时间及真空度等条件对乳酸聚合反应的影响.通过红外光谱(FTIR)和核磁共振波谱(1H-NMR)分析和表征聚乳酸的结构,凝胶渗透色谱(GPC)测试其分子量及分子量分布.研究表明,较为适宜的工艺条件为:以二水合氯化亚锡(SnCl2·2H2O)和对甲基苯磺酸(TSA)为催化剂,且SrCl2·2H2O相对于乳酸预聚体的质量比为0.5%,真空度-0.98MPa,温度180℃,反应时间10h.得到的聚L-乳酸的粘均分子量为6.17×104,分子量分布1.37,且产率较高,色泽较浅.  相似文献   

9.
利用差示扫描量热仪(DSC)研究了癸二酰二苯甲酰肼(BSAD)成核剂对聚L-乳酸(PLLA)/玻璃纤维(GF)复合材料等温及非等温结晶性能的影响。结合偏光显微镜(POM)观察发现,BSAD可在熔融加工中与PLLA基体形成均相,在冷却过程中,该体系发生相分离,BSAD晶体优先从PLLA熔体中析出,诱导PLLA结晶。等温结晶动力学研究发现,随着BSAD含量提高,PLLA的Avrami指数逐渐减小,表明异相成核增强。在110℃形成的成核剂晶体尺寸较小,可在提高PLLA结晶速率的同时细化晶体尺寸,并改善PLLA/GF复合材料的拉伸、弯曲及冲击性能。  相似文献   

10.
本文从环氧树脂的缺点出发,研究了有机/无机纳米复合材料的特点,选用环氧树脂/二氧化硅纳米复合的方法来改善材料的耐热性能、提高材料的韧性,以期获得具有高热稳定性能和韧性的环氧树脂材料。  相似文献   

11.
浦鸿汀  秦深  杨正龙  万德成  袁俊杰 《功能材料》2007,38(9):1499-1502,1506
研究制备了一种新型基于化学键合的聚乙烯咪唑/POSS纳米复合材料(POSS-b-PVI),并获得一种基于POSS-b-PVI的磷酸掺杂高温非水体系的质子导电膜.研究表明:与纯聚乙烯咪唑薄膜相比,该纳米复合质子导电材料的可见光透过率和质子导电率等有大幅度的提高,在200℃条件下该纳米复合质子导电材料的导电率可以达到7×10-4S/cm,光学透过率可达32%.  相似文献   

12.
The nanoparticle dispersity and interfacial property could be considered as a basis of their further application in the nanostructured materials. In this paper, the dispersity and interfacial phenomena of poly(N-isopropylacrylamide) modified gold nanoparticles were investigated. Firstly, such polymer/gold nanocomposites were demonstrated to have a good dispersity in water, tetrahydrofuran, alcohols and also chloroform, so they were used to entrap fluorescent dye-labelled lipids in chloroform as nanocontainers and subsequently delivery the fluorescent lipids into water as nanocarriers. Secondly, when the nanocomposites in water/chloroform mixture were heated above 35 degrees C, the nanocomposite particles could be partially transferred from water into chloroform across the interface, and they would come back into water again as cooling, displaying a reversible thermal response. Moreover, such polymer/gold nanocomposites at the immiscible water/toluene fluids preferred to assembly into 2-dimensional membranes with variable density at the water/oil interface. The special dispersion properties of the poly(N-isopropylacrylamide)/gold nanocomposites provide many potentials in the future.  相似文献   

13.
Biodegradable poly(l-lactide) (PLLA)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were prepared via simple melt compounding at various ome-POSS loadings in this work. Scanning and transmission electron microscopy observations indicate that ome-POSS were homogeneously dispersed in the PLLA matrix. Effect of ome-POSS on the nonisothermal crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, crystal structure, dynamic mechanical properties, and thermal stability of PLLA in the nanocomposites was investigated in detail. It is found that the presence of ome-POSS enhances both nonisothermal cold and melt crystallization of PLLA in the nanocomposites relative to neat PLLA. The overall isothermal melt crystallization rates are faster in the PLLA/ome-POSS nanocomposites than in neat PLLA and increase with increasing the ome-POSS loading; however, the crystallization mechanism of PLLA remains unchanged. The nucleation density of PLLA spherulites is enhanced, while the crystal structure of PLLA is not modified in the PLLA/ome-POSS nanocomposites. The storage modulus has been apparently improved in the PLLA/ome-POSS nanocomposites with respect to neat PLLA, whereas the glass-transition temperatures vary slightly between neat PLLA and the PLLA/ome-POSS nanocomposites. The thermal stability of PLLA matrix is reduced slightly in the PLLA/ome-POSS nanocomposites.  相似文献   

14.
15.
16.
The effect of addition of organically modified montmorillonite (OMMT) on the phase separation of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend was examined. Using two types of OMMT modified with two different kinds of surfactants, the effect of organic modification on nanocomposites was investigated by focusing on three major aspects: phase transition, morphological study, and melt rheological behavior both below and above the critical transition temperature. X-ray diffraction (XRD) patterns revealed the formation of intercalated nanocomposites and transmission electron micrographic (TEM) observations showed that the ordering of silicate layers in blend matrix is well matched with the XRD patterns. The addition of clay was found to affect both the mechanism of phase separation and the final morphology. Such effects resulted in uncommon rheological behavior of the blend both below and above the critical transition temperature. Surface phase separation of thin films for virgin blend and nanocomposites was also examined by atomic force microscopy (AFM). Morphology resulting after phase separation was found to be dependent on the nature and the amount of OMMT added to the polymer blend.  相似文献   

17.
Poly (butylene terephthalate) (PBT)/silica nanocomposites were compounded from cyclic butylene terephthalate (CBT) resin with very low melt viscosity via high-speed stirring and subsequent in situ polymerization. The effect of silica nanoparticles on the properties of CBT and its polymer composites has been studied. It was shown that the well-dispersed silica nanoparticles, even in small content (1–2 wt.%), result in the dramatic extension of the polymerization process of CBT resin. The flexural properties of polymerized PBT nanocomposites, including modulus, yield strength and failure strain, was improved significantly with the incorporation of silica nanoparticles.  相似文献   

18.
19.
Thermo-sensitive nanocomposites based on mesoporous silica SBA-15 and poly(N-isopropylacrylamide) (PNIPAAm) have been synthesized via in situ radical polymerization in mesopores. The resultant materials were used as carriers to construct temperature-responsive controlled drug delivery systems. Loading of model drug ibuprofen (IBU) was ascertained by IR and UV-vis/DRS spectroscopy, and the mesostructure and pore properties of the delivery system were characterized by small-angle XRD and N2 adsorption-desorption experiment. Study on drug uptake indicated that higher polymer content in the composite, higher IBU concentration in loading solution and lower loading temperature below the lower critical solution temperature (LCST) could increase the loading amount of IBU by means of interaction between IBU and polymer and trap effect of the polymer chains in pores. Different from the uptake of IBU, however, the release of drug followed a positive temperature-responsive manner, that is, the release was accelerated upon heating above the LCST, while decelerated and lasted for a longer period of time below the LCST. This feature allows the material to function as a reversible fast/slow transition switch or rate regulator responsive to environmental temperature and to be potentially interesting in controlled delivery and other smart application fields.  相似文献   

20.
Recent research shows that the addition of chitosan microspheres (CMs) to poly(L-lactide) (PLLA) can result in a composite scaffold material with improved biocompatibility and mechanical properties for tissue engineering applications. However, research regarding the influence of CMs on scaffold degradation is absent in the literature. This paper presents a study on the in vitro degradation of scaffolds made from PLLA with CMs. In this study, the PLLA/CMs scaffolds with a 25% ratio of CMs to PLLA were immersed in phosphate-buffered saline (PBS) solution at 37°C for 8 weeks. The in vitro degradation of the scaffolds was investigated using micro-computed tomography (μCT), weight loss analysis, Raman spectroscopy, and differential scanning calorimetry (DSC). Microstructure changes during degradation were monitored using μCT. The μCT results were consistent with the results obtained from Raman spectra and DSC analysis, which reflected that adding CMs into PLLA can decrease the degradation rate compared with pure PLLA scaffolds. The results suggest that PLLA/CMs scaffold degradation can be regulated and controlled to meet requirements imposed a given tissue engineering application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号