首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文对豆渣膳食纤维的制备工艺进行了研究。利用生物酶法改性提高豆渣中可溶性膳食纤维(SDF)含量,通过单因素实验和正交实验确定了纤维素酶酶解的最佳工艺。最佳工艺条件为:纤维素酶添加量0.5%,料液比1∶12,温度45℃,pH值4.5,酶解时间1.5h,乙醇沉淀时间1h,在此条件下,豆渣SDF得率可达到8.53%。在此基础上,制得了豆渣膳食纤维粉,其持水力和膨胀性分别为5.0783g/g和8.4675mL/g,色泽呈乳白色,具有豆渣膳食纤维固有的气味和滋味,质量指标达到国家二级标准。  相似文献   

2.
豆渣中可溶性膳食纤维提取工艺的研究   总被引:2,自引:0,他引:2  
利用醇沉法提取豆渣中的可溶性膳食纤维(SDF),通过单因素试验和正交试验确定了SDF提取的最佳条件并测定其功能指标.研究结果表明,豆渣中SDF提取的最佳条件是提取温度90%,提取时间1.5h,碳酸钠质量分数4%,加压时间1.5h,在此条件下豆渣中SDF的提取率可达52.4%.此时膳食纤维的持水力为3.1990 g/g,膨胀性为6.3894mL/g.  相似文献   

3.
豆渣膳食纤维挤压改性工艺条件的研究   总被引:1,自引:0,他引:1  
采用双螺杆膨化技术,研究豆渣膳食纤维(SDF)挤压改性工艺条件.结果表明,影响豆渣挤压改性的主要因素是物料粒度,其次是膨化温度和物料含水量,螺杆转速影响最小,最佳工艺条件是:物料粒度65目、物料含水量40%、膨化温度120 ℃、螺杆转速150 r/min,在此条件下SDF含量达到27.60%.  相似文献   

4.
以大豆豆渣为原料,先用传统化学方法碱法处理得到大豆可溶性膳食纤维(SDF)和不可溶性膳食纤维(IDF),然后再用改进的酶法处理前一步得到的不可溶性膳食纤维,进一步提取大豆可溶性膳食纤维,并通过单因素试验及正交试验对碱法和酶法条件进行了优化。湿豆渣经烘干、粉碎、碱液水解、酶解、沉淀、干燥后制得膳食纤维。结果表明,碱法制备可溶性膳食纤维的最佳工艺条件是:温度80℃,物料比1∶15,反应时间1.5h,p H13。在此条件下,豆渣中SDF得率为18.2%。碱处理得到的IDF使用复合多糖酶处理法提取可溶性膳食纤维的最佳工艺条件是:温度45℃,物料比1∶15(m∶v),加酶量10.0%,反应时间1.5h,p H4.5。在此条件下,SDF得率为11.09%。  相似文献   

5.
用挤压法提高豆渣可溶性膳食纤维含量的研究   总被引:12,自引:0,他引:12  
研究了用挤压工艺提高豆渣中可溶性膳食纤维(SDF)的含量,并探讨了SDF增的来源。  相似文献   

6.
花生壳膳食纤维提取工艺的研究   总被引:1,自引:0,他引:1  
以花生壳为研究对象,通过一系列单因素实验、正交试验和方差分析的方法,着重对花生壳挤压预处理工艺条件、可溶性膳食纤维提取工艺条件和不溶性膳食纤维的提取工艺条件进行了研究,研究结果表明:花生壳挤压预处理的工艺条件为:物料含水量为20%、挤压温度为170℃、螺杆转速为180r/min;花生壳中可溶性膳食纤维提取的最佳工艺条件为:p H为3、提取温度为85℃,提取时间为2h;花生壳中不溶性膳食纤维提取的最佳工艺条件为:α-淀粉酶加酶量为0.5%、反应p H为6.5、反应温度为65℃、反应时间为50min。在上述工艺条件下制备的花生壳膳食纤维产品中,可溶性膳食纤维含量达到18.1%,不溶性膳食纤维含量达到80.7%。  相似文献   

7.
以绿豆渣为原料,研究了酶法提取绿豆渣可溶性膳食纤维(SDF)的关键技术,并采用正交试验方法优化了SDF的提取条件,测定了SDF的组成及功能性质。结果表明:酶法提取绿豆渣中SDF的最佳工艺条件为纤维素酶用量0.5%,pH5.0,提取温度55℃,提取1.0h;在此条件下,SDF得率可达21.072%,产品杂质含量低,持水力为4.857g/g,膨胀力为4.2mL/g。  相似文献   

8.
主要以玉米粉,大米粉和豆渣粉为原料,用双螺杆挤压机进行挤压膨化,通过单因素试验和正交试验研究了螺杆转速、机筒温度、物料水分对提高产品可溶性膳食纤维含量及感官品质的影响。实验结果表明:在基础配方大米∶玉米=1∶3,豆渣的添加量8%的情况下,最佳挤压工艺条件为螺杆转速850 r/min,机筒温度150℃,物料水分14%。  相似文献   

9.
利用响应曲面法对豆渣可溶性膳食纤维(SDF)的提取条件进行优化。在单因素试验的基础上,根据Box-Behnken中心组合设计原理,选取浸提液pH值、提取温度和提取时间3因素进行响应曲面分析,建立豆渣可溶性膳食纤维提取率的二次多项数学模型。在分析各因素的显著性和交互作用后,得出豆渣可溶性膳食纤维提取工艺的最佳条件为:浸提液pH值4.5、提取温度50℃、提取时间60 min,在该条件下可溶性膳食纤维的得率为36.66%。  相似文献   

10.
豆渣水不溶性膳食纤维提取工艺研究   总被引:3,自引:0,他引:3  
本文以豆渣为原料,研究了酸碱处理法提取水不溶性膳食纤维的最佳提取工艺条件.研究结果表明,制取水不溶性豆渣膳食纤维的最佳酸碱处理条件为,碱用量5 mL/g,碱处理温度40 ℃,碱处理时间80min;酸用量4 mL/g,酸处理时间80min.产品中膳食纤维含量达78.3%.  相似文献   

11.
以豆渣为原料,采用酶法提取豆渣中水不溶性膳食纤维(IDF),并对IDF的性质进行初步研究。其中由单因素试验和正交试验得出豆渣IDF酶法提取的最佳提取工艺为:蛋白酶酶解温度50℃、时间5 h、用量25 mg/g,α-淀粉酶酶解温度70℃、时间1 h、用量6 mg/g,糖化酶酶解温度50℃、时间30 min、用量5 mg/g,此工艺条件下提取率为80.13%。酶法提取豆渣IDF成品的功能特性较好,其持水力为9.66 g/g,溶胀性为4.94 m L/g,持油力为4.92 g/g。  相似文献   

12.
为提高豆渣利用率,改善其风味和口感,拓宽豆渣在食品领域的应用,本研究以豆渣为主要原料,与低筋粉进行调配后制得复配粉,并对其进行挤压膨化处理。以可溶性膳食纤维含量为指标,采用响应面法优化挤压膨化工艺。通过傅立叶红外光谱和粒度仪对挤压膨化前后复配粉的官能团及粒度进行分析,差示量热扫描对其进行稳定性分析。结果表明,最佳挤压膨化加工参数为物料水分30%、挤压温度180℃、螺杆转速160 r/min。此时复配粉中可溶性膳食纤维含量由3.11%提升至15.47%,挤压膨化后复配粉的持水性由3.45 g/g提升至4.86 g/g,复配粉的持油性由2.27 g/g提升至4.85 g/g;挤压膨化后复配粉中的膳食纤维,红外光谱图具有显著的糖类特征吸收峰;挤压膨化后复配粉中的可溶性膳食纤维粒度减小;挤压膨化后复配粉具有高度的热稳定性。综上,经过挤压膨化改性后豆渣复配粉的理化性质有着明显的提升,本研究为豆渣改性利用提供了理论依据。  相似文献   

13.
从豆渣中制取可溶性膳食纤维的研究   总被引:38,自引:4,他引:38  
分别用三种方法即直接水浸提法、酶解法、生物发酵法对从豆渣中制备可溶性膳食纤维进行了研究,采用正交试验设计确定了直接水浸提法的最佳提取条件为:提取温度100℃、自然pH、提取时间10min、加水量25ml.g^-1,选用最佳条件的验证试验结果表明,可溶性膳食纤维产率由原来的6.55%提高到11.34%,增加了近一倍,酶解法研究结果表明,可溶性膳食纤维产率进一步提高到16.59%,而用生物发酵法处理豆渣后,可溶性膳食纤维率有所下降,并就可能原因进行了探讨。  相似文献   

14.
潘进权  伍惠敏  陈雨钿 《食品科学》2012,33(15):210-215
以豆渣为原料,采用毛霉发酵方法制备可溶性膳食纤维。采用单因素试验、部分析因设计、中心组合设计及响应面分析的方法对影响豆渣可溶性膳食纤维制备工艺的因素:培养基含水量、起始pH值、发酵温度、发酵时间等发酵工艺进行分析,并对其进行优化,确定相对较合适的发酵工艺条件:每支250mL三角瓶装干豆渣10g,加水调节其含水量为56.7%,添加蛋白胨2.33%、KH2PO4 0.57%、CaCl2 0.2%、吐温-80 0.2%,调节培养基起始pH6.0,接种后置于25℃发酵80h。在优化的工艺条件下,豆渣可溶性膳食纤维的得率可达42.2%。结果表明,毛霉发酵可以显著提高豆渣中可溶性膳食纤维的含量,应用该方法制备豆渣可溶性膳食纤维具有可行性。  相似文献   

15.
大豆水溶性膳食纤维的提取研究   总被引:5,自引:1,他引:4  
本文研究了常压和加压预处理条件下豆渣中水溶性膳食纤维(SDF)的提取工艺.研究表明常压下豆渣中水溶性膳食纤维提取的最佳工艺条件为:2%六偏磷酸钠溶液、pH值 6.5、料液比1:30、反应温度60 ℃、反应时间2 h;加压预处理大大提高了可溶性纤维的提取率,最佳提取条件为:处理温度120 ℃、pH值 5.7、处理时间3.5 h.在此工作的基础上,采用膜分离技术和喷雾干燥等技术,并进行了中试生产,大大降低了成本,而且产品质量更好,从而使之具有非常良好的产业化应用前景.豆粕提取大豆蛋白之后所剩余的纤维适合于生产SDF,SDF提取得率超过了原料的43.0%.  相似文献   

16.
酶法提取玉米渣膳食纤维及功能特性的研究   总被引:1,自引:1,他引:0  
通过单因素和正交实验得到了最佳工艺条件,即酶品种为混合酶(蛋白酶加纤维素酶比例为1:1),粉碎度40目,料水比1:3,加酶量2.1%,酶解时间4.5 h,酶解温度50℃,pH值6.0,玉米渣膳食纤维得率为82.6%。同时研究了玉米渣膳食纤维的功能特性,其持水力为367%,膨胀性为315%,持油性为137%。在此条件下得到的玉米渣膳食纤维,色泽为淡黄色的粉末状,粒度均匀,无特殊气味,是理想的膳食纤维。  相似文献   

17.
膳食纤维具有调节胃肠道和预防慢性疾病等重要的生理功能,被誉为第七大营养素,但不同膳食纤维功能特性不同,因此,高活性膳食纤维的研发以及应用于食品加工和作为保健(功能)食品成为目前食品行业关注的热点。豆渣是大豆加工副产品,富含膳食纤维,但主要是不溶性膳食纤维(IDF),可溶性膳食纤维(SDF)含量极低,导致豆渣口感较差,在食品加工中的应用受限。本文综述了不同膳食纤维功能特性及比较了不同改性方法的工作原理和对豆渣膳食纤维中SDF的影响,为不同来源IDF的改性及豆渣膳食纤维的加工利用提供支持。  相似文献   

18.
本实验以透明度、溶解速度、水蒸气透过系数及透油系数为指标,研究料液比、增稠剂(CMC、海藻酸钠)、甘油、蜂蜡对膜性能的影响,制备一种成本低、性能好的大豆膳食纤维可食用膜。通过单因素及正交试验,确定可食用膜制备的最佳配方为料液比1:35(W/W)、增稠剂1%(CMC:海藻酸钠=3:1)、甘油1.5%、蜂蜡0.5%。用此配方制备的可食用膜的透明度为13.872%,溶解速度小于30s/g,水蒸汽透过系数为0.621g·mm/m2·d·kPa,透油系数为4.016g·mm/m2·d。  相似文献   

19.
利用豆渣生产高活性膳食纤维的研究   总被引:14,自引:1,他引:14  
本文介绍了以豆渣为原料,采用微生物发酵和动态超高压均质处理对大豆膳食纤维进行改性研究,得到了可溶性膳食纤维含量达30%以上的高活性大豆膳食纤维。研究了不同发酵条件和不同处理压力对提高豆渣中可溶性膳食纤维(SDF)含量的影响,结果表明利用发酵法可提高可溶性膳食纤维的含量达15%以上,动态超高压均质处理法可将可溶性膳食纤维含量提高到35%以上,而发酵处理后使得超高压均质处理提高可溶性膳食纤维含量更容易,在均质压力为40MPa下均质即可将可溶性膳食纤维含量提高到30%。  相似文献   

20.
利用牛蒡渣提取高活性膳食纤维的工艺   总被引:11,自引:1,他引:11  
以牛蒡渣为原料 ,提取水溶性膳食纤维和水不溶性膳食纤维。正交试验结果表明 ,提取水溶性膳食纤维的适宜条件为 :温度 80℃ ,pH 2 0 ,时间 90min ,V (原料 ) :V (水 ) =1∶10 ,得率为1 0 % (以干渣计 ) ,成品色泽呈淡黄色 ,气味较好 ;水不溶性膳食纤维的提取条件为 :温度 60℃ ,pH2 0 ,时间 60min ,V (原料 )∶V(水 ) =1∶5 ,得率为 8 5 % (以干渣计 ) ,成品色泽呈白色 ,气味淡 ,其膨胀力高达 6 5mL/g ,持水力为 72 0 %  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号