首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction is ubiquitously involved in the initiation of physiological signals that lead to growth and proliferation of cells. The signaling cascade mediated by the mitogen-activated protein kinase (MAPK) is considered essential for T cell growth and function. Therefore, it was of interest to determine the influence of age on the induction of MAPK in mitogen-activated T cells. T cells from young (4-6 months) and old (24-26 months) rats responded to concanavalin A (Con A) stimulation by increasing MAPK, c-jun amino terminal kinase (JNK), and p21ras activities. The time course of induction of MAPK/JNK and p21ras activities was similar in T cells isolated from young and old rats. The induction of JNK activity did not change significantly with age; however, the induction of MAPK and p21ras activities was significantly less (50 to 65%) in T cells from old rats than in T cells from young rats. Although the relative protein levels of p42 and p44 MAPK did not change with age, the proportion of the phosphorylated p44 MAPK decreased with age. In addition, it was found that the in vitro kinase activities of the T cell receptor-associated protein tyrosine kinase Lck (p56Lck) and ZAP-70 but not Fyn (p59Fyn) were lower in T cells from old rats than in T cells from young rats. The decline in activities of these signaling molecules with age was not associated with changes in their corresponding protein levels. Thus, our results demonstrate that aging alters the activation of the signal transduction cascade that leads to T cell activation.  相似文献   

2.
Angiotensin II induces an oxidant stress-dependent hypertrophy in cultured vascular smooth muscle cells. To investigate the growth-related molecular targets of H2O2, we examined the redox sensitivity of agonist-stimulated activation of the mitogen-activated protein kinase (MAPK) family. We show here that angiotensin II elicits a rapid increase in intracellular H2O2 and a rapid and robust phosphorylation of both p42/44MAPK (16-fold) and p38MAPK (15-fold). However, exogenous H2O2 activates only p38MAPK (14-fold), and diphenylene iodonium, an NADH/NADPH oxidase inhibitor, attenuates angiotensin II-stimulated phosphorylation of p38MAPK, but not p42/44MAPK. Furthermore, in cells stably transfected with human catalase, angiotensin II-induced intracellular H2O2 generation is almost completely blocked, resulting in inhibition of phosphorylation of p38MAPK, but not p42/44MAPK, and a subsequent partial decrease in angiotensin II-induced hypertrophy. Specific inhibition of either the p38MAPK pathway with SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H- imidaz ole) or the p42/44MAPK pathway with PD98059 (2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one) also partially, but significantly, attenuates angiotensin II-induced hypertrophy; however, simultaneous blockade of both pathways has an additive inhibitory effect, indicating that the hypertrophic response to angiotensin II requires parallel, independent activation of both MAPK pathways. These results provide the first evidence that p38MAPK is a critical component of the oxidant stress (H2O2)-sensitive signaling pathways activated by angiotensin II in vascular smooth muscle cells and indicate that it plays a crucial role in vascular hypertrophy.  相似文献   

3.
4.
5.
Tissue factor (TF), a transmembrane glycoprotein, forms a high affinity complex with factor VII/VIIa (FVIIa) and thereby initiates blood coagulation. Tissue factor pathway inhibitor (TFPI) is an endogenous protease inhibitor of TF/FVIIa-initiated coagulation. We previously reported that TF was a strong chemotactic factor for cultured vascular smooth muscle cells (SMCs). In this study, we examined the contribution of FVIIa and the effect of TFPI to TF-induced cultured SMC migration. TF/FVIIa complex showed a strong migration ability, however, neither TF alone nor FVIIa induced SMC migration. TF/FVIIa treated by a serine protease inhibitor and the complex of TF and inactivated FVIIa (DEGR-FVIIa) did not stimulate SMC migration. Pretreatment with hirudin and the antibodies to alpha-thrombin and factor X had no effect on TF/FVIIa-induced SMC migration, although alpha-thrombin and factor Xa also induced SMC migration respectively. TFPI markedly inhibited TF/FVIIa-induced SMC migration in a concentration-dependent manner, but did not affect the SMC migration induced by platelet-derived growth factor (PDGF)-BB, basic fibroblast-growth factor (bFGF), or alpha-thrombin. These results indicate that the catalytic activity of TF/FVIIa complex is important on SMC migration, and TFPI can reduce SMC migration as well as thrombosis.  相似文献   

6.
7.
8.
Tissue factor (TF) residues Lys20 and Asp58 form part of a binding epitope previously shown by alanine scanning to be critical for high affinity interactions with factor VIIa (FVIIa). To explore the possibility of enhancing the affinity of a TF-based antagonist for FVIIa, we created libraries in which residues at 20, 58, and adjacent positions were varied in constructs containing the soluble extracellular domain of TF (sTF) fused to the bacteriophage M13 tail coat protein. TF variants monovalently displayed on phage were then sorted on the basis of binding to FVIIa. Sorting of preliminary libraries, in which position 58 and/or 20 and surrounding residues were randomized, led to the selection of TF proteins of essentially wild-type sequence. Therefore, we devised a strategy wherein TF position 20 was held fixed as alanine and 5 specific residues near to, and including, position 58 were randomized to effectively obtain alternative sequences at this interface. The consensus sequence reached with this library included wild-type residues at positions 61, 62, 65, and 66 but exclusively tryptophan at position 58. Analyses of the soluble K20A,D58W (A20W58) TF protein indicated that it binds FVIIa with an affinity comparable with wild-type sTF but is defective as a cofactor for FVIIa-dependent factor X activation. Further experiments designed to elucidate the mechanism of binding suggest that the new binding interactions involve more than the simple addition of hydrophobic surface area.  相似文献   

9.
10.
The experiments presented here were designed to examine the contribution of p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation to the activation of the mitogen-activated protein kinase cascade induced by bombesin, lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF) in Swiss 3T3 cells. We found that tyrosine phosphorylation of p125FAK in response to these growth factors is completely abolished in cells treated with cytochalasin D or in cells that were suspended in serum-free medium for 30 min. In marked contrast, the activation of p42mapk by these factors was independent of the integrity of the actin cytoskeleton and of the interaction of the cells with the extracellular matrix. The protein kinase C inhibitor GF 109203X and down-regulation of protein kinase C by prolonged pretreatment of cells with phorbol esters blocked bombesin-stimulated activation of p42mapk, p90rsk, and MAPK kinase-1 but did not prevent bombesin-induced tyrosine phosphorylation of p125FAK. Furthermore, LPA-induced p42mapk activation involved a pertussis toxin-sensitive guanylate nucleotide-binding protein, whereas tyrosine phosphorylation of p125FAK in response to LPA was not prevented by pretreatment with pertussis toxin. Finally, PDGF induced maximum p42mapk activation at concentrations (30 ng/ml) that failed to induce tyrosine phosphorylation of p125FAK. Thus, our results demonstrate that p42mapk activation in response to bombesin, LPA, and PDGF can be dissociated from p125FAK tyrosine phosphorylation in Swiss 3T3 cells.  相似文献   

11.
We developed a simple assay for the measurement of tissue factor procoagulant activity (TF PCA) in whole blood samples that avoids the need for mononuclear cell isolation. This method combines convenience of sample collection and processing with a high degree of sensitivity and specificity for TF. Using this method, we have determined that TF PCA is detectable in whole blood samples from normal individuals, which is itself a novel observation. Essentially all PCA could be shown to be localized in the mononuclear cell fraction of blood. Compared with controls, whole blood TF levels were significantly (P < .000001) elevated in patients with sickle cell disease (SCD), regardless of the subtype of hemoglobinopathy (SS or SC disease). No significant difference in TF PCA was observed between patients in pain crisis compared with those in steady-state disease. Because TF functions as cofactor in the proteolytic conversion of FVII to FVIIa in vitro, it was expected that an increase in circulating TF PCA would lead to an increased in vivo generation of FVIIa. On the contrary, FVIIa levels were actually decreased in the plasma of patients with SCD. Plasma TF pathway inhibitor (TFPI) antigen levels were normal in SCD patients, suggesting that accelerated clearance of FVIIa by the TFPI pathway was not responsible for the reduced FVIIa levels. We propose that elevated levels of circulating TF PCA may play an important role in triggering the activation of coagulation known to occur in patients with SCD. Because TF is the principal cellular ligand for FVIIa, it is possible that increased binding to TF accounts for the diminished plasma FVIIa levels.  相似文献   

12.
We have found that the novel phospholipid diacylglycerol pyrophosphate (DGPP), identified in bacteria, yeast, and plants, but not in mammalian cells, is able to potently activate macrophages for enhanced secretion of arachidonate metabolites, a key event in the immunoinflammatory response of leukocytes. Macrophage responses to DGPP are specific and are not mediated by its conversion into other putative lipid mediators such as phosphatidic acid, lysophosphatidic acid, or diacylglycerol. The responses to DGPP are compatible with a receptor-recognition event because they are blocked by suramin. Intracellular signaling initiated by DGPP includes phosphorylation and activation of the Group IV cytosolic phospholipase A2 and of the extracellular-signal regulated p42 mitogen-activated protein kinase (MAPK) and p44 MAPK, and membrane translocation of the protein kinase C isoenzymes alpha, epsilon, delta. These results establish DGPP as a novel macrophage-activating factor and suggest a potential role for this compound in triggering homeostatic cellular responses.  相似文献   

13.
MAPK-activated protein kinase-2 (MAPKAP kinase-2) is activated in vitro by the p42 and p44 isoforms of MAPK (p42/p44MAPK). In several cell lines, however, MAPKAP kinase-2 is activated by sodium arsenite, heat shock, or osmotic stress and not by agonists that activate p42/p44MAPK. We have identified a MAPK-like enzyme that acts as a MAPKAP kinase-2 reactivating kinase (RK). RK is recognized by an antiserum raised against a Xenopus MAPK (Mpk2), which is most similar to HOG1 from S. cerevisiae. We also identified a RK kinase (RKK) on the basis of its ability to activate either RK or a GST-Mpk2 fusion protein. The RKK, RK, and MAPKAP kinase-2 constitute a new stress-activated signal transduction pathway in vertebrates that is distinct from the classical MAPK cascade.  相似文献   

14.
15.
We have identified by two-dimensional polyacrylamide gel electrophoresis a protein known as stathmin which is phosphorylated in a time- and concentration-dependent manner in response to brain-derived neurotrophic factor (BDNF) in primary cultures of cortical neurons. We show that stathmin phosphorylation is preceded by the activation of mitogen-activated protein kinase (MAPK) isoforms p44 and p42. Moreover, the MAPK kinase inhibitor PD 098059, which inhibits MAPK activation, also markedly reduces BDNF-stimulated phosphorylation of stathmin, therefore suggesting that phosphorylation of stathmin is triggered by the activation of MAPK. Phosphorylation of stathmin is specific for BDNF since nerve growth factor does not stimulate MAPK and stathmin phosphorylation in cultured cortical neurons. Taken together, these results identify stathmin as a new target protein of BDNF, possibly involved in the development of cortical neurons.  相似文献   

16.
17.
A previous report from this laboratory demonstrated that human B lymphocytes expressed nerve growth factor (NGF) receptors on their surface. On the basis of NGF enhancement of B cell proliferation these receptors are presumed to be functional. We have now characterized one of the signaling pathways that NGF may utilize in the functional activation of B lymphocytes. Stimulation of three different human B-lymphoblastoid cell lines with NGF induced the tyrosine phosphorylation and activation of the p42erk-2 isoform of MAP-kinase (MAPK). In addition, NGF induced shifts in the mobility of p90 ribosomal S6 kinase (p90rsk) on immunoblots and increased p90rsk kinase activity in immunoprecipitates. NGF-induced shifts in p90rsk mobility displayed similar dose and time kinetics as NGF-induced MAPK activation. Activation of both MAPK and p90rsk occurred with doses of NGF as low as 400 pg/ml. Preincubation of NGF with anti-NGF Ab inhibited NGF-induced activation of MAPK and p90rsk. These results demonstrate that the interaction of NGF with its receptor on human B cells results in the stimulation of major components of the signaling pathway also initiated by NGF-receptor ligation in cells of neuronal origin.  相似文献   

18.
IL-10 is an anti-inflammatory cytokine with potent immunomodulatory effects, including inhibition of cytokine production. However, regulation of monocyte IL-10 production is poorly understood. In this report we have investigated the mechanisms of LPS-induced IL-10 production by human peripheral blood monocytes and demonstrate that IL-10 synthesis is uniquely dependent on the endogenous proinflammatory cytokines IL-1 and/or TNF-alpha. LPS signal transduction in monocytes has been shown to involve activation of the p38 and p42 mitogen-activated protein kinase (MAPK) cascades. The results in this paper indicate that inhibition of p38 MAPK potently inhibited the production of IL-10, IL-1beta, and TNF-alpha, whereas blockade of the p42/44 MAPK pathway, while partially inhibiting TNF-alpha and IL-1beta production, had no effect on monocyte secretion of IL-10. Furthermore, neither the inhibition of monocyte TNF-alpha induced by IL-10 nor the stimulation of soluble TNF receptor production was affected by inhibition of the p42/44 MAPK pathway, suggesting that this signaling event is not involved in either monocyte production of or anti-inflammatory responses to IL-10. These data raise the interesting possibility that proinflammatory TNF-alpha-mediated effects may be selectively blocked without modulating the induction or the response to IL-10, whereas the signaling events associated with the anti-inflammatory events induced by IL-10 remain to be elucidated.  相似文献   

19.
20.
RAFTK, a novel nonreceptor protein kinase, has been shown to be involved in focal adhesion signal transduction pathways in neuronal PC12 cells, megakaryocytes, platelets, and T cells. Because focal adhesions may modulate cytoskeletal functions and thereby alter phagocytosis, cell migration, and adhesion in monocyte-macrophages, we investigated the role of RAFTK signaling in these cells. RAFTK was abundantly expressed in THP1 monocytic cells as well as in primary alveolar and peripheral blood-derived macrophages. Colony-stimulating factor-1 (CSF-1)/macrophage colony-stimulating factor (M-CSF) stimulation of THP1 cells increased the tyrosine phosphorylation of RAFTK; similar increases in phosphorylation were also detected after lipopolysaccharide stimulation. RAFTK was phosphorylated with similar kinetics in THP1 cells and peripheral blood-derived macrophages. Immunoprecipitation analysis showed associations between RAFTK and the signaling molecule phosphatidylinositol-3 (PI-3) kinase. PI-3 kinase enzyme activity also coprecipitated with the RAFTK antibody, further confirming this association. The CSF-1/M-CSF receptor c-fms and RAFTK appeared to associate in response to CSF-1/M-CSF treatment of THP1 cells. Inhibition of RAFTK by a dominant-negative kinase mutant reduced CSF-1/M-CSF-induced MAPK activity. These data indicate that RAFTK participates in signal transduction pathways mediated by CSF-1/M-CSF, a cytokine that regulates monocyte-macrophage growth and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号