首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Short‐term traffic speed prediction is one of the most critical components of an intelligent transportation system (ITS). The accurate and real‐time prediction of traffic speeds can support travellers’ route choices and traffic guidance/control. In this article, a support vector machine model (single‐step prediction model) composed of spatial and temporal parameters is proposed. Furthermore, a short‐term traffic speed prediction model is developed based on the single‐step prediction model. To test the accuracy of the proposed short‐term traffic speed prediction model, its application is illustrated using GPS data from taxis in Foshan city, China. The results indicate that the error of the short‐term traffic speed prediction varies from 3.31% to 15.35%. The support vector machine model with spatial‐temporal parameters exhibits good performance compared with an artificial neural network, a k‐nearest neighbor model, a historical data‐based model, and a moving average data‐based model.  相似文献   

2.
The accurate forecasting of traffic states is an essential application of intelligent transportation system. Due to the periodic signal control at intersections, the traffic flow in an urban road network is often disturbed and expresses intermittent features. This study proposes a forecasting framework named the spatiotemporal gated graph attention network (STGGAT) model to achieve accurate predictions for network-scale traffic flows on urban roads. Based on license plate recognition (LPR) records, the average travel times and volume transition relationships are estimated to construct weighted directed graphs. The proposed STGGAT model integrates a gated recurrent unit layer, a graph attention network layer with edge features, a gated mechanism based on the bidirectional long short-term memory and a residual structure to extract the spatiotemporal dependencies of the approach- and lane-level traffic volumes. Validated on the LPR system in Changsha, China, STGGAT demonstrates superior accuracy and stability to those of the baselines and reveals its inductive learning and fault tolerance capabilities.  相似文献   

3.
Timely monitoring of pavement cracks is essential for successful maintenance of road infrastructure. Accurate information concerning crack location and severity enables proactive management of the infrastructure. Black‐box cameras, which are becoming increasingly widespread at an affordable price, can be used as efficient road‐image collectors over a wide area. However, the cracks in these images are difficult to detect, because the images containing them often include objects other than roads. Thus, we propose a pixel‐level detection method for identifying road cracks in black‐box images using a deep convolutional encoder–decoder network. The encoder consists of convolutional layers of the residual network for extracting crack features, and the decoder consists of deconvolutional layers for localizing the cracks in an input image. The proposed network was trained on 427 out of 527 images extracted from black‐box videos and tested on the remaining 100 images. Compared with VGG‐16, ResNet‐50, ResNet‐101, ResNet‐200 with transfer learning, and ResNet‐152 without transfer learning, ResNet‐152 with transfer learning exhibited the best performance, achieving recall, precision, and intersection of union of 71.98%, 77.68%, and 59.65%, respectively. The experimental results prove that the proposed method is optimal for detecting cracks in black‐box images at the pixel level.  相似文献   

4.
Forecasting citywide traffic congestion on large road networks has long been a nontrivial research problem due to the challenge of modeling complex evolution patterns of congestion in highly stochastic traffic environments. Arguing that purely data-driven methods may not perform well for congestion forecasting, we propose a deep marked graph process model for predicting the congestion indices and the occurrence time of traffic congestion events for complex signalized road networks. Traffic congestion is considered as a nonrigorous spatiotemporal extreme event. We extend the traditional point process model by integrating a specially designed spatiotemporal graph convolutional network. This hybrid strategy takes advantage of the simple form of the point process model as well as the ability of graph neural networks to emulate the evolution of congestion. Experiments on real-world congestion data sets show that the proposed method outperforms state-of-the-art baseline methods, yielding satisfactory prediction results on a large signalized road network with superior computational efficiency.  相似文献   

5.
Accurate traffic speed forecasting is one of the most critical tasks in proactive traffic management and the deployment of advanced traveler information systems. This paper proposes a hybrid forecasting approach named DeepEnsemble by integrating the three‐dimensional convolutional neural network (3D CNN) with ensemble empirical mode decomposition (EEMD). There are four steps in this hybrid approach. First, EEMD is adopted to decompose the complex traffic speed time series data with noise into several intrinsic mode functions (IMFs) and a residue. Second, a three‐dimensional tensor is established and fed into 3D CNN for prediction. Third, the output of 3D CNN prediction is obtained by a linear combination of the results of all components. Finally, the 3D CNN prediction output, external features, and historical features are fused to predict the network‐wide traffic speed simultaneously. The proposed DeepEnsemble approach is tested on the three‐month traffic speed series data of a real‐world large‐scale urban expressway network with 308 traffic flow detectors in Beijing, China. The experimental results indicate that DeepEnsemble outperforms the state‐of‐the‐art network‐wide traffic speed forecasting models. 3D CNN learns temporal, spatial, and depth information better than 2D CNN. Moreover, forecasting accuracy can be improved by employing EEMD. DeepEnsemble is a promising model with scalability and portability for network‐wide traffic speed prediction and can be further extended to conduct traffic status monitoring and congestion mitigation strategies.  相似文献   

6.
On‐road emission inventories in urban areas have typically been developed using traffic data derived from travel demand models. These approaches tend to underestimate emissions because they often only incorporate data on household travel, not including commercial vehicle movements, taxis, ride hailing services, and other trips typically underreported within travel surveys. In contrast, traffic counts embed all types of on‐road vehicles; however, they are only conducted at selected locations in an urban area. Traffic counts are typically spatially correlated, which enables the development of methods that can interpolate traffic data at selected monitoring stations across an urban road network and in turn develop emission estimates. This paper presents a new and universal methodology designed to use traffic count data for the prediction of periodic and annual volumes as well as greenhouse gas emissions at the level of each individual roadway and for multiple years across a large road network. The methodology relies on the data collected and the spatio‐temporal relationships between traffic counts at various stations; it recognizes patterns in the data and identifies locations with similar trends. Traffic volumes and emissions prediction can be made even on roads where no count data exist. Data from the City of Toronto traffic count program were used to validate the output of various algorithms, indicating robust model performance, even in areas with limited data.  相似文献   

7.
This article presents a novel real‐time traffic network management system using an end‐to‐end deep learning (E2EDL) methodology. A computational learning model is trained, which allows the system to identify the time‐varying traffic congestion pattern in the network, and recommend integrated traffic management schemes to reduce this congestion. The proposed model structure captures the temporal and spatial congestion pattern correlations exhibited in the network, and associates these patterns with efficient traffic management schemes. The E2EDL traffic management system is trained using a laboratory‐generated data set consisting of pairings of prevailing traffic network conditions and efficient traffic management schemes designed to cope with these conditions. The system is applied for the US‐75 corridor in Dallas, Texas. Several experiments are conducted to examine the system performance under different traffic operational conditions. The results show that the E2EDL system achieves travel time savings comparable to those recorded for an optimization‐based traffic management system.  相似文献   

8.
There have been a plethora of algorithms and techniques for the one‐to‐one correspondence matching between two small graphs at the element level. However, it is a daunting task for large graphs. It is necessary to design an aggregate statistical measurement to measure the degree of matching at the coarse grained level between two large graphs. This work presents a novel contribution with the proposal of an aggregate statistical measurement of the matching between two large networks at the macro topological structure level. In the viewpoint of strategic planning application, decision makers want to know whether the road infrastructure network meets the traffic flow network at the macro level rather than the micro level. The macro topological structure of the graph is described by a partition of all the vertices by the singular value decomposition based on the weighted vertex‐path incidence matrix. The topological structure matching measurement (TSMM) of the two graphs is defined as the degree of similarity between two partitions. As a case study, the TSMM is considered between the road network and the traffic flow network for Shanghai. The result is 0.2129, which shows that the two networks mismatch to a certain degree. This, agreeing with the current situation of the traffic congestion in Shanghai, suggests the improvement in the urban traffic.  相似文献   

9.
Dynamic origin‐destination (OD) flow estimation is one of the most fundamental problems in traffic engineering. Despite numerous existing studies, the OD flow estimation problem remains challenging, as there is large dimensional difference between the unknown values to be estimated and the known traffic observations. To meet the needs of active traffic management and control, accurate time‐dependent OD flows are required to understand time‐of‐day traffic flow patterns. In this work, we propose a three‐dimensional (3D) convolution‐based deep neural network, “Res3D,” to learn the high‐dimensional correlations between local traffic patterns presented by automatic vehicle identification observations and OD flows. In this paper, a practical framework combining simulation‐based model training and few‐shot transfer learning is introduced to enhance the applicability of the proposed model, as continuously observing OD flows could be expensive. The proposed model is extensively tested based on a realistic road network, and the results show that for significant OD flows, the relative errors are stable around 5%, outperforming several other models, including prevalent neural networks as well as existing estimation models. Meanwhile, corrupted and out‐of‐distribution samples are generated as real‐world samples to validate Res3D's transferability, and the results indicated a 60% improvement with few‐shot transfer learning. Therefore, this proposed framework could help to bridge the gaps between traffic simulations and empirical cases.  相似文献   

10.
For a local area road network, the available traffic data of traveling are the flow volumes in the key intersections, not the complete OD matrix. Considering the circumstance characteristic and the data availability of a local area road network, a new model for traffic assignment based on Monte Carlo simulation of intersection turning movement is provided in this paper. For good stability in temporal sequence, turning ratio is adopted as the important parameter of this model. The formulation for local area road network assignment problems is proposed on the assumption of random turning behavior. The traffic assignment model based on the Monte Carlo method has been used in traffic analysis for an actual urban road network. The results comparing surveying traffic flow data and determining flow data by the previous model verify the applicability and validity of the proposed methodology.  相似文献   

11.
A vehicle equipped with a vehicle‐to‐vehicle (V2V) communications capability can continuously update its knowledge on traffic conditions using its own experience and anonymously obtained travel experience data from other such equipped vehicles without any central coordination. In such a V2V communications‐based advanced traveler information system (ATIS), the dynamics of traffic flow and intervehicle communication lead to the time‐dependent vehicle knowledge on the traffic network conditions. In this context, this study proposes a graph‐based multilayer network framework to model the V2V‐based ATIS as a complex system which is composed of three coupled network layers: a physical traffic flow network, and virtual intervehicle communication and information flow networks. To determine the occurrence of V2V communication, the intervehicle communication layer is first constructed using the time‐dependent locations of vehicles in the traffic flow layer and intervehicle communication‐related constraints. Then an information flow network is constructed based on events in the traffic and intervehicle communication networks. The graph structure of this information flow network enables the efficient tracking of the time‐dependent vehicle knowledge of the traffic network conditions using a simple graph‐based reverse search algorithm and the storage of the information flow network as a single graph database. Further, the proposed framework provides a retrospective modeling capability to articulate explicitly how information flow evolves and propagates. These capabilities are critical to develop strategies for the rapid flow of useful information and traffic routing to enhance network performance. It also serves as a basic building block for the design of V2V‐based route guidance strategies to manage traffic conditions in congested networks. Synthetic experiments are used to compare the graph‐based approach to a simulation‐based approach, and illustrate both memory usage and computational time efficiencies.  相似文献   

12.
Abstract: The existing well‐known short‐term traffic forecasting algorithms require large traffic flow data sets, including information on current traffic scenarios to predict the future traffic conditions. This article proposes a random process traffic volume model that enables estimation and prediction of traffic volume at sites where such large and continuous data sets of traffic condition related information are unavailable. The proposed model is based on a combination of wavelet analysis (WA) and Bayesian hierarchical methodology (BHM). The average daily “trend” of urban traffic flow observations can be reliably modeled using discrete WA. The remaining fluctuating parts of the traffic volume observations are modeled using BHM. This BHM modeling considers that the variance of the urban traffic flow observations from an intersection vary with the time‐of‐the‐day. A case study has been performed at two busy junctions at the city‐centre of Dublin to validate the effectiveness of the strategy.  相似文献   

13.
Abstract: In their goal to effectively manage the use of existing infrastructures, intelligent transportation systems require precise forecasting of near‐term traffic volumes to feed real‐time analytical models and traffic surveillance tools that alert of network links reaching their capacity. This article proposes a new methodological approach for short‐term predictions of time series of volume data at isolated cross sections. The originality in the computational modeling stems from the fit of threshold values used in the stationary wavelet‐based denoising process applied on the time series, and from the determination of patterns that characterize the evolution of its samples over a fixed prediction horizon. A self‐organizing fuzzy neural network is optimized in its configuration parameters for learning and recognition of these patterns. Four real‐world data sets from three interstate roads are considered for evaluating the performance of the proposed model. A quantitative comparison made with the results obtained by four other relevant prediction models shows a favorable outcome.  相似文献   

14.
This article proposes a prototype of an urban traffic control system based on a prediction‐after‐classification approach. In an off‐line phase, a repository of traffic control strategies for a set of (dynamic) traffic patterns is constructed. The core of this stage is the k‐means algorithm for daily traffic pattern identification. The clustering method uses the input attributes flow, speed, and occupancy and it transforms the dynamic traffic data at network level in a pseudo‐covariance matrix, which collects the dynamic correlations between the road links. A desirable number of traffic patterns is provided by Bayesian Information Criterion and the ratio of change in dispersion measurements. In an on‐line phase, the current daily traffic pattern is predicted within the repository and its associated control strategy is implemented in the traffic network. The dynamic prediction scheme is constructed on the basis of an existing static prediction method by accumulating the trials on set of patterns in the repository. This proposal has been assessed in synthetic and real networks testing its effectiveness as a data mining tool for the analysis of traffic patterns. The approach promises to effectively detect the current daily traffic pattern and is open to being used in intelligent traffic management systems.  相似文献   

15.
戴禾 《中国市政工程》2020,(2):9-11,125
道路交通流量数据的记录、统计一般是基于路段的。在城市道路规划、建设与管理工作中,需要从区域的角度对道路交通相关数据进行统计,就需要一种简便的工具将基于路段的数据纳入不同区域范围的对象中。由此提出一种基于网格的道路网交通量统计算法,并在VISUM软件中通过编写脚本文件实现该算法的应用。该方法为路段数据提供更多的空间统计信息,可辅助用于城市道路网规划、建设、管理相关工作的决策。  相似文献   

16.
Building a feedforward computational neural network model (CNN) involves two distinct tasks: determination of the network topology and weight estimation. The specification of a problem adequate network topology is a key issue and the primary focus of this contribution. Up to now, this issue has been either completely neglected in spatial application domains, or tackled by search heuristics (see Fischer and Gopal 1994). With the view of modelling interactions over geographic space, this paper considers this problem as a global optimization problem and proposes a novel approach that embeds backpropagation learning into the evolutionary paradigm of genetic algorithms. This is accomplished by interweaving a genetic search for finding an optimal CNN topology with gradient-based backpropagation learning for determining the network parameters. Thus, the model builder will be relieved of the burden of identifying appropriate CNN-topologies that will allow a problem to be solved with simple, but powerful learning mechanisms, such as backpropagation of gradient descent errors. The approach has been applied to the family of three inputs, single hidden layer, single output feedforward CNN models using interregional telecommunication traffic data for Austria, to illustrate its performance and to evaluate its robustness.  相似文献   

17.
城市道路信息管网是一种新兴的管网技术。通过对其需求量影响因素进行分析,建立了城市道路信息管网需求量的预测步骤及模型。并以运营商——中国电信为例,验证了预测模型的正确性;在此基础上,给出了其它运营商信息管网需求量预测的具体建议,供各城市发展道路信息管网时参考。  相似文献   

18.
How to effectively ensemble multiple models while leveraging the spatio‐temporal information is a challenging but practical problem. However, there is no existing ensemble method explicitly designed for spatio‐temporal data. In this paper, a fully convolutional model based on semantic segmentation technology is proposed, termed as spatio‐temporal ensemble net. The proposed method is suitable for grid‐based spatio‐temporal prediction in dense urban areas. Experiments demonstrate that through spatio‐temporal ensemble net, multiple traffic state prediction base models can be combined to improve the prediction accuracy.  相似文献   

19.
在某大型住宅项目设计中,结合周边未来土地利用和道路交通规划情况,对周边路网及项目生成交通量进行预测,从而评估周边道路和关键节点的交通运行状况,并结合项目既有方案对地块内、外交通组织提出改善建议和优化方案。  相似文献   

20.
新型管控式城市简单立交具有高效能、经济、灵活便捷、畅达等优势,具有广阔的应用空间。南宁市沙井大道南站西路立交桥等奖方案采用三层定向互通式城市道路立体交叉,其主要特点在于对近、远期主要流向的东西向采用高架的方式,沙井大道的左转匝道则选择从地下穿过,其它地面交通则通过渠化灯控的措施加以解决。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号