首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 92 closely‐spaced reflection seismic profiles (~4000 line‐km) were tied to biostratigraphic and lithological data from six deep exploration wells in the poorly‐known Nogal rift basin, northern Somalia, and were integrated with outcrop and aeromagnetic data to investigate the basin stratigraphy and tectonic evolution. Aeromagnetic data show NW‐SE trending magnetic anomalies which are interpreted as plutonic bodies intruded during the Early Cretaceous, probably contemporaneously with a pre‐Cenomanian uplift phase. The aeromagnetic data also suggest a change of basement type from Inda Ad Series metasediments in the SE of the study area to igneous and high‐grade metamorphic basement in the NW. Biostratigraphic data and seismic reflection profiles define the Nogal Basin as a WNW–ESE striking half‐graben, approximately 250 km long and 40 km wide, which formed as a result of mainly Cenomanian–Maastrichtian and Oligocene–Miocene intracontinental rifting. The depocentre contains at least 7000 m of Mesozoic and Cenozoic sediments and is located in the centre of the basin (east of well Nogal‐1), to the south of the Shileh Madu Range. To the north, the basin is bounded by a major border fault along which significant variations in the thickness of sedimentary units are observed, suggesting that the fault controlled basin architecture and patterns of sedimentation. Oligocene–Miocene normal faults which resulted in north‐tilted fault blocks are widespread within the main basin; smaller‐scale sub‐basins oriented NW‐SE to WNW‐ESE are observed to the NW of the basin and probably developed contemporaneously. The Late Jurassic rift phase which has been documented elsewhere in northern Somalia is either missing in the Nogal Basin or is preserved only in localised grabens in the western and central parts of the basin. This is probably due to the pre‐Cenomanian uplift and erosion which removed almost the entire Jurassic and Lower Cretaceous successions over a wide area referred to as the Nogal‐Erigavo Arch. A more pronounced rifting episode followed this erosional event in the Cenomanian–Maastrichtian and resulted in the deposition of well‐sorted fluvio‐deltaic sandstones (Gumburo and Jesomma Formations), more than 2000 m thick. In wells in the Nogal Basin, these formations are between two and three times thicker than in wells drilled in footwall locations, and include excellent reservoir rocks sealed by transgressive mudstones and carbonates. A final rifting event in the Oligocene–Miocene was related to the opening of the Gulf of Aden. A rift sag phase which accommodated the Early Oligocene continental sediments of the Nogal Group initially developed at the centre of the basin. This was followed by a period of strong rotational faulting and tilting, which reactivated the Cenomanian–Maastrichtian structures.  相似文献   

2.
The Guban Basin is a NW‐SE trending Mesozoic‐Tertiary rift basin located in northern Somaliland (NW Somalia) at the southern coast of the Gulf of Aden. Only seven exploration wells have been drilled in the basin, making it one of the least explored basins in the Horn of Africa – southern Arabia region. Most of these wells encountered source, reservoir and seal rocks. However, the wells were based on poorly understood subsurface geology and were located in complex structural areas. The Guban Basin is composed of a series of on‐ and offshore sub‐basins which cover areas of 100s to 1000s of sq. km and which contain more than 3000 m of sedimentary section. Seismic, gravity, well, outcrop and geochemical data are used in this study to investigate the petroleum systems in the basin. The basin contains mature source rocks with adequate levels of organic carbon together with a variety of reservoir rocks. The principal exploration play is the Mesozoic petroleum system with mature source rocks (Upper Jurassic Gahodleh and Daghani shales) and reservoirs of Upper Jurassic to Miocene age. Maturity data suggest that maximum maturity was achieved prior to Oligocene rift‐associated uplift and unroofing. Renewed charge may have commenced during post‐ Oligocene‐Miocene rifting as a result of the increased heat flows and the increased depth of burial of the Upper Jurassic source rocks in localised depocentres. The syn‐rift Oligocene‐Miocene acts as a secondary objective owing to its low maturity except possibly in localised offshore sub‐basins. Seals include various shale intervals some of which are also source rocks, and the Lower Eocene evaporites of the Taleh Anhydrite constitute an effective regional seal. Traps are provided by drag and rollover anticlines associated with tilted fault blocks. However, basaltic volcanism and trap breaching as a consequence of the Afar plume and Oligocene‐Miocene rifting of the Gulf of Aden cause considerable exploration risk in the Guban Basin.  相似文献   

3.
This paper reports on the hydrocarbon potential of subsurface samples from the Upper Jurassic Lower Cretaceous succession at the Rumaila (North and South), Zubair, Subba and West Qurna oilfields in southern Iraq. A total of 37 fine‐grained core samples of the Sulaiy, Yamama, Ratawi and Zubair Formations from ten wells were analyzed. Contents of organic carbon and sulphur were measured; other analyses included Rock‐Eval pyrolysis, optical microscopy in incident light, solvent extraction and gas chromatography of non‐aromatic hydrocarbons. The results indicated that the samples from the Cretaceous succession (Yamama, Zubair and Ratawi Formations) are at moderate levels of thermal maturity, whereas samples from the Upper Jurassic – Lower Cretaceous Sulaiy Formation are at a stage of thermal maturity beyond peak oil generation. According to the results of this study, the Sulaiy Formation is an excellent highly‐mature source rock and it is probably responsible for the generation of large quantities of oil in the study area. The samples differ with respect to their organic fades and biomarker distribution, indicating that palaeo depositional conditions varied significantly.  相似文献   

4.
Coastal parts of Croatia are dominated by the SW‐verging Dinaric foldbelt, to the west and SW of which is the Adriatic Basin (the stable foreland). In both areas, the stratigraphic column is dominated by a thick carbonate succession ranging from Carboniferous to Miocene. Four megasequences have been identified: (i) a pre‐platform succession ranging in age from Late Carboniferous (Middle Pennsylvanian: Moscovian) to Early Jurassic (Early Toarcian; Bru?ane and Ba?ke Ostarije Formations); (ii) an Early Jurassic to Late Cretaceous platform megasequence (Mali Alan Formation); (iii) a Paleogene to Neogene post‐platform megasequence (Ra?a Formation); and (iv) a Neogene to Quaternary (Pliocene to Holocene) megasequence (Istra and Ivana Formations). A number of organic‐rich intervals with source rock potential have been identified on‐ and offshore Croatia: Middle and Upper Carboniferous, Upper Permian, Lower and Middle Triassic, Lower and Upper Jurassic, Lower and Upper Cretaceous, Eocene, and Pliocene – Pleistocene. Traps and potential plays have been identified from seismic data in the Dinaric belt and adjacent foreland. Evaporites of Permian, Triassic and Neogene (Messinian) ages form potential regional seals, and carbonates with secondary porosity form potential reservoirs. Oil and gas shows in wells in the Croatian part of the Adriatic Basin have been recorded but no oil accumulations of commercial value have yet been discovered. In the northern Adriatic offshore Croatia, Pliocene hemi‐pelagic marlstones and shales include source rocks which produce commercial volumes of biogenic gas. The gas is reservoired in unconsolidated sands of the Pleistocene Ivana Formation.  相似文献   

5.
The Masila Basin is an important hydrocarbon province in Yemen but the origin of its hydrocarbons is not fully understood. In this study, we evaluate Upper Jurassic source rocks in the Madbi Formation and assess the results of basin modelling in order to improve our understanding of burial history and hydrocarbon generation. This source rock has generated commercial volumes of hydrocarbons which migrated into Jurassic and Lower Cretaceous reservoir rocks. Cuttings samples of shales from the Upper Jurassic Madbi Formation from boreholes in the centre-west of the Masila Basin were analysed using organic geochemistry (Rock-Eval pyrolysis, extract analysis) and organic petrology. The shales generally contain more than 2.0 wt % TOC and have very good to excellent hydrocarbon potential. Kerogen is predominantly algal Type II with minor Type I. Thermal maturity of the organic matter is Rr 0.69–0.91%. Thermal and burial history models indicate that the Madbi Formation source rock entered the early-mature to mature stage in the Late Cretaceous to Early Tertiary. Hydrocarbon generation began in the Late Cretaceous, reaching maximum rates during the Early Tertiary. Cretaceous subsidence had only a minor influence on source rock maturation and OM transformation.  相似文献   

6.
The main phase of rifting the Sirt Basin (Libya) had ceased by the mid-Cretaceous but Alpine-related tectonic pulses in the late Eocene resulted in northward tilting of the basin. In the Maragh Trough (SE Sirt basin), a regional unconformity consequently separates Eocene carbonates from the overlying Oligocene succession. The unconformity marks a change from Eocene carbonate sedimentation to more mixed shallow-marine deposition in the Oligocene. A regional transgression re-established fully marine conditions in the Miocene.
Deeply-buried (Triassic) source rocks in the Maragh Trough reached peak oil generation during the Oligocene. Two potential reservoir intervals have been identified: upper Eocene rudstones of the Augila Formation, and unconformably-overlying sandstones of the Lower Oligocene Arida Formation. Mid-Oligocene shales provide a regional seal.
Facies distributions and reservoir properties are related to rift-related structural highs. Despite the absence of a nearby source kitchen, Upper Eocene carbonates have been found to be oil-bearing in the Maragh Trough at wells D1- and F1–96. This indicates that hydrocarbons have migrated along graben-bounding faults from deeply-buried source rocks to platform and sub-platform areas. Traps are of combined structural and stratigraphic type.  相似文献   

7.
The Lower Miocene Jeribe Formation in northern and NE Iraq is composed principally of dolomitic limestones with typical porosity in the range of 10–24% and mean permeability of 30 mD. The formation serves as a reservoir for oil and gas at the East Baghdad field, gas at Mansuriya, Khashim Ahmar, Pulkhana and Chia Surkh fields, and oil at Injana, Gillabat, Qumar and Jambur. A regional seal is provided by the anhydrites of the Lower Fars (Fat'ha) Formation. For this study, oil samples from the Jeribe Formation at Jambur oilfield, Oligocene Baba Formation at Baba Dome (Kirkuk field) and Late Cretaceous Tanuma and Khasib Formations at East Baghdad field were analysed in order to investigate their genetic relationships. Graphical presentation of the analytical results (including plots of pristane/nC17 versus phytane/nCl8, triangular plots of steranes, tricyclic terpane scatter plots, and graphs of pristanelphytane versus carbon isotope ratio) indicated that the oils belong to a single oil family and are derived from kerogen Types II and III. The oils have undergone minor biodegradation and are of high maturity. They were derived from marine organic matter deposited with carbonate‐rich source rocks in suboxic‐anoxic settings. A range of biomarker ratios and parameters including a C28/ C29 sterane ratio of 0.9, an oleanane index of 0.2 and low tricyclic terpane values indicate a Late Jurassic or Early Cretaceous age for the source rocks, and this age is consistent with palynomorph analyses. Potential source rocks are present in the Upper Jurassic – Lower Cretaceous Chia Gara Formation and the Middle Jurassic Sargelu Formation at the Jambur, Pulkhana, Qumar and Mansuriya fields; minor source rock intervals occur in the Balambo and Sarmord Formations. Hydrocarbon generation and expulsion from the Chia Gara Formation was indicated by pyrolysate organic matter, palynofacies type (A), and the maturity of Gleichenidites spores. Oil migration from the Chia Gara Formation source rocks (and minor oil migration from the Sargelu Formation) into the Jeribe Formation reservoirs took place along steeply‐dipping faults which are observed on seismic sections and which cut through the Upper Jurassic Gotnia Anhydrite seal. Migration is confirmed by the presence of asphalt residues in the Upper Cretaceous Shiranish Formation and by a high migration index (Rock Eval SI / TOC) in the Chia Gara Formation. These processes and elements together form a Jurassic/Cretaceous – Tertiary petroleum system whose top‐seal is the Lower Fars (Fat'ha) Formation anhydrite.  相似文献   

8.
This study presents an organic geochemical characterization of heavy and liquid oils from Cretaceous and Cenozoic reservoir rocks in the Tiple and Caracara blocks in the eastern Llanos Basin, Colombia. Samples of heavy oil were recovered from the Upper Eocene Mirador Formation and the C7 interval of the Oligocene – Miocene Carbonera Formation; the liquid oils came from these intervals and from the Cretaceous Guadalupe, Une and Gachetá Formations. The heavy oil and most of the liquid oils probably originated from multiple source rocks or source facies, and showed evidence of biodegradation as suggested by the coexistence of n‐alkanes and 25‐norhopanes. The results indicate a close genetic relationship between the samples in the Carbonera (C7 interval), Mirador and Guadalupe Formation reservoirs. These petroleums are interpreted to result from at least two separate oil charges. An early charge (Oligocene to Early Miocene) was derived from marine carbonate and transitional siliciclastic Cretaceous source rocks as indicated by biomarker analysis using GC/MS. This initial oil charge was biodegraded in the reservoir, and was mixed with a later charge (or charges) of fresh oil during the Late Miocene to Pliocene. A relatively high proportion of the unaltered oil charge was recorded for heavy oil samples from the Melero‐1 well in the Tiple block, and is inferred to originate from Cenozoic carbonaceous shale or coaly source rocks. Geochemical parameters suggest that oils from the Gachetá and Une Formations are similar and that they originated from a source different to that of the other oil samples. These two oils do not correlate well with extracts from transitional siliciclastic source rock from the Upper Cretaceous Gachetá Formation in the Ramiriqui‐1 well, located in the LLA 22 block to the north. By contrast, one or more organofacies of the Gachetá Formation may have generated the heavy oil and most of the liquid oil samples. The results suggest that the heavy oils may have formed as a result of biodegradation at the palaeo oil‐water contact, although deasphalting cannot entirely be dismissed.  相似文献   

9.
THE SUDANESE RED SEA: 2. NEW DEVELOPMENTS IN PETROLEUM GEOCHEMISTRY   总被引:2,自引:0,他引:2  
From the limited analytical data which is available from the study area, it appears that the Mukawar and Hamait Formations, sandy facies of Upper Cretaceous and Cenozoic age, have little or no hydrocarbon source potential. However, of the twelve Sudanese Red Sea wells, only one penetrated the Mukawar Formation. and the Hamamit is only known in four wells. On the other hand, the lower to middle Miocene Rudeis. Kareem and Belayim Formations were penetrated in several wells. and may have actually generated black oil in attaining their current levels of thermal maturity. The middle to upper? Miocene Dungunab Formation, which is equivalent to thesouth Gharib Formation of the Gulf of Suez. contains thin. regionallyextensive, intra-evaporite shales. These are early-mature in coastal areas but, if developed in the deeper offshore. are likely to be post-mature and are likely to have generated hydrocarbons. The zeit Formation is of variable thickness. the maxima coniciding with areas of deltaic influence. Although information is limited, it appears that occasional thin shales units may have significam source potential. The areas of more concentrated deltaic sedimentation with in the Zeit Formation are more likely to provide gas-prone source rocks. The Plio-pleistocene Abu Shagara Group has no oil source-potential in the nearshore areas. Potential may improve further offshore. where it is possible that these marine sediments may be richer in organic matter and have been subject to higher heat flow. Hydrocarbon generation in the Sudanese Red Sea had been influenced by many factors in addition to rift-controlled subsidence. These include the high thermal conductivity of evaporites, tectonic overpressuring and, in deeper waters, significantly higher levels of heat flow. Lower to middle Miocene source rocks are likely to have generated hydrocarbons at the end of Miocene times, whereas younger source rocks could be generating hydrcarbons at the present. The source of gas in the Suakin-1 gas-condenstae and Bashayer-1 dry gas discoveries is probably in the lower part of the Zeit Formation, an organically-rich deltaic facies. The condensate at Suakin-1 is likely to have been sourced from the inter-evaporitic shales of the underlying Dungunab Formation. Black-oil shows have been recorded at several Sudanese Red Sea wells and a significant gas-condensate discovery was made at Barrqan-1 in the northern part of he Saqdi sector. It has been suggested that reserves of condensate may be as high as half a billion barrels. Oil seeps on the Dahlac and Farasan Islands in the Ethiopin and Saudi sectors provide further grounds for an optimistic view that generation of commercial volumes of oil in the Sudanese Red Sea cannot be ruled our  相似文献   

10.
Sandstones in the Miocene Bhuban and Lower Pliocene Boka Bil Formations contain all of the hydrocarbons so far discovered in the Bengal Basin, Bangladesh. Organic‐rich shale intervals in these formations have source rock potential and are the focus of the present study which is based on an analysis of 36 core samples from wells in eight gasfields in the eastern Bengal Basin. Kerogen facies and thermal maturity of these shales were studied using standard organic geochemical and organic petrographic techniques. Organic matter is dominated by Type III kerogen with lesser amounts of Type II. TOC is 0.16–0.90 wt % (Bhuban Formation) and 0.15–0.55 wt % (Boka Bil Formation) and extractable organic matter (EOM) is 132–2814 ppm and 235–1458 ppm, respectively. The hydrogen index is 20–181 mg HC/g TOC in the Bhuban shales and 35–282 mg HC/ g TOC in the Boka Bil shales. Vitrinite was the dominant maceral group observed followed by liptinite and inertinite. Gas chromatographic parameters including the C/S ratio, n‐alkane CPI, Pr/Ph ratio, hopane Ts/Tm ratio and sterane distribution suggest that the organic matter in both formations is mainly derived from terrestrial sources deposited in conditions which alternated between oxic and sub‐oxic. The geochemical and petrographic results suggest that the shales analysed can be ranked as poor to fair gas‐prone source rocks. The maturity of the samples varies, and vitrinite reflectance ranges from 0.48 to 0.76 %VRr. Geochemical parameters support a maturity range from just pre‐ oil window to mid‐ oil window.  相似文献   

11.
The Danish Central Graben, North Sea, is a mature oil‐ and gas‐producing basin in which the principal source rocks are the Upper Jurassic – lowermost Cretaceous marine shales of the Farsund Formation (Kimmeridge Clay Formation equivalent), with possible additional potential in the directly underlying Lola Formation. This study investigates the initial source rock potential of the basin by evaluating the original (back‐calculated) source rock properties (TOCo, S2o, HIo) of the shales in the Farsund and Lola Formations within a temporal and spatial framework. About 4800 samples from 81 wells regionally distributed in the Danish Central Graben were included in the study. Samples for source rock analysis were in general collected with varying sampling density from the entire shale section. The shale section has been divided into seven units (referred to as pre‐FSU1 to FSU6; FSU: Farsund Seismic Unit) which are delineated by mappable, regional‐scale seismic markers. For the pre‐FSU1 and FSU2–FSU6 units, the number of available samples ranged from 608 to 1145, while 433 samples were available for FSU1. Good source rock quality varies through space and time and reflects both the structural development of the basin and the effects of the Late Jurassic transgression, with primary kitchen areas developing in the Tail End Graben, Feda Graben, Gertrud Graben and the Rosa Basin. The source rock quality of the shales increases gradually through time and reaches a maximum in FSU6 which includes the “hot shales” of the Bo Member. The maximum source rock quality appears to correspond to an original Hydrogen Index (HIo) of approximately 675 mg HC/g TOC. The proportion of oil‐prone samples per unit (with HIo >350 mg HC/g TOC) ranges from 7 to 11% in the pre‐FSU1 to FSU2 units (Lower Kimmeridgian – Lower Volgian), increasing to 18 – 22% in FSU3 and FSU4/FSU5 (Lower Volgian – Middle Volgian), and reaching a maximum of 53% in FSU6 (Upper Volgian – Ryazanian). FSU6 is the most prolific oil‐prone source rock interval, but the presence of oil‐prone intervals in older and deeper parts of the shale succession is important for assessing the generation potential of the Upper Jurassic petroleum system. The breakdown of the Upper Jurassic – lowermost Cretaceous shale section into mappable seismic units with assigned original source rock properties will contribute to a considerably improved understanding of the temporal and spatial distributions of source rock quality in the Danish Central Graben.  相似文献   

12.
The underexplored Sandino Basin (Nicaragua Basin/Trough) is located within the forearc area of western Nicaragua and NW Costa Rica. Exploration activity since 2004 has focussed on the onshore sector of the basin, and has included the first drilling campaign for over 30 years. Recent 2D basin modelling of the offshore sector together with organic geochemical studies has attempted to reassess the basin's petroleum potential. Geochemical data from the deepest offshore well indicate that Middle Eocene to Lower Oligocene sediments of the Brito Formation, as well as Upper Oligocene to Lower Miocene sediments of the Masachapa Formation, may have source rock potential. A third and perhaps more significant potential source rock interval is associated with the Lower Cretaceous black shales of the Loma Chumico Formation, which has been studied in the adjacent forearc area in NW Costa Rica (Tempisque Basin) and is inferred to be present in the Sandino Basin.
The thermal history of the forearc basin is controlled by the low basal heat flow (39 mW/m2). 2D modelling has shown that the Sandino Basin is thermally mature, resulting in the potential for hydrocarbon generation in organic-rich intervals in the Brito and Masachapa Formations. A petroleum-generating "kitchen" has tentatively been identified on a NE-SW seismic section which crosses the basin. Modelling suggests that this kitchen has been active from the Late Eocene until the present day, and that the main phases of petroleum generation in general coincide with phases of maximum subsidence in the Late Eocene, Late Oligocene and Plio-Pleistocene. Hydrocarbon migration most probably occurred from the deep basin towards the flanks. Significant volumes of petroleum may have been lost prior to the Late Miocene before the formation of a coastal flexure which can be recognised in the NE of the seismic profile.  相似文献   

13.
Some 180 core and cuttings samples of shales and limestones from the Middle Jurassic – Late Cretaceous succession (Khatatba, Masajid, Alam El-Bueib, Alamein, Kharita, Bahariya and Abu Roash Formations) were collected from wells Ja 27–2, Tarek-1 and Jb 26–1 in the central, structurally-low part of the Shushan Basin and from well Lotus-1 in the structurally-elevated western part of the basin. All samples were screened for total organic carbon (TOC) content. Selected samples were then analyzed by Rock-Eval pyrolysis, and extracted for biomarker analyses. Visual kerogen analysis and vitrinite reflectance measurements were also undertaken and oil - source rock correlations were attempted. The results indicate that the thermal maturity of the samples can be correlated closely with burial depth. Samples from the central part of the basin are more mature than those from the west. Samples from the central part of the basin (except those from the Albian Kharita Formation) have reached thermal maturities sufficient to generate and expel crude oils. Extracts from the Middle Jurasic Khatatba and Early Cretaceous Alam El-Bueib Formations can be correlated with a crude oil sample from well Ja 27–2.
In well Lotus-1 in the west of the basin, four distinct organic facies can be recognized in the Jurassic-Cretaceous interval. One of the facies ("facies 4") has a sufficiently high TOC content to act as a source rock. Thermal maturities range from immature to peak oil generation, and the top of the oil window occurs at approximately 8000 ft.  相似文献   

14.
Petroleum systems analysis and maturity modelling is used to predict the timing and locations of hydrocarbon generation in the underexplored offshore Zambezi Delta depression and Angoche basin, northern Mozambique. Model inputs include available geological, geochemical and geophysical data. Based on recent plate‐tectonic reconstructions and regional correlations, the presence of Valanginian and Middle and/or Late Jurassic marine source rock is proposed in the study area. The stratigraphy of the Mozambique margin was interpreted along reflection seismic lines and tied to four wells in the Zambezi Delta depression. Thermal maturity was calibrated against measured vitrinite reflectance values from these four wells. Four 1‐D models with calibration data were constructed, together with another five without calibration data at pseudo‐well locations, and indicate the maturity of possible source rocks in the Zambezi Delta depressions and Angoche basin. Two 2‐D petroleum systems models, constrained by seismic reflection data, depict the burial history and maturity evolution of the Zambezi Delta basin. With the exception of the deeply‐buried centre of the Zambezi Delta depression where potential Jurassic and Lower Cretaceous source rocks were found to be overmature for both oil and gas, modelling showed that potential source rocks in the remaining parts of the study area are mature for hydrocarbon generation. In both the Zambezi Delta depression and Angoche basin, indications for natural gas may be explained by early maturation of oil‐prone source rocks and secondary oil cracking, which likely began in the Early Cretaceous. In distal parts of the Angoche basin, however, the proposed source rocks remain in the oil window.  相似文献   

15.
This paper presents a numerical petroleum systems model for the Jurassic‐Tertiary Austral (Magallanes) Basin, southern Argentina, incorporating the western part of the nearby Malvinas Basin. The modelling is based on a recently published seismo‐stratigraphic interpretation and resulting depth and thickness maps. Measured vitrinite reflectance data from 25 wells in the Austral and Malvinas Basins were used for thermal model calibration; eight calibration data sets are presented for the Austral Basin and four for the Malvinas Basin. Burial history reconstruction allowed eroded thicknesses to be estimated and palaeo heat‐flow values to be determined. Six modelled burial, temperature and maturation histories are shown for well locations in the onshore Austral Basin and the western Malvinas Basin. These modelled histories, combined with kinetic data measured for a sample from the Lower Cretaceous Springhill Formation, were used to model hydrocarbon generation in the study area. Maps of thermal maturity and transformation ratio for the three main source rocks (the Springhill, Inoceramus and Lower Margas Verdes Formations) were compiled. The modelling results suggest that deepest burial occurred during the Miocene followed by a phase of uplift and erosion. However, an Eocene phase of deep burial leading to maximum temperatures cannot be excluded based on vitrinite reflectance and numerical modelling results. Relatively little post‐Miocene uplift and erosion (approx. 50–100 m) occurred in the Malvinas Basin. Based on the burial‐ and thermal histories, initial hydrocarbon generation is interpreted to have taken place in the Early Cretaceous in the Austral Basin and to have continued until the Miocene. A similar pattern is predicted for the western Malvinas Basin, with an early phase of hydrocarbon generation during the Late Cretaceous and a later phase during the Miocene. However, source rock maturity (as well as the transformation ratio) remained low in the Malvinas Basin, only just reaching the oil window. Higher maturities are modelled for the deeper parts of the Austral Basin, where greater subsidence and deeper burial occurred.  相似文献   

16.
East Venezuela盆地是一个大型的不对称前陆盆地,具有丰富油气资源。古生代以来,经历了晚三叠世—侏罗纪裂谷、白垩纪—始新世被动边缘和渐新世至今前陆盆地3个演化阶段。纵向上沉积地层可划分为前白垩系、白垩系和后白垩系3套巨层序。East Venezuela盆地最主要的烃源岩是Guayuta群和Tigre组海相泥页岩和碳酸盐岩。生油岩成熟度由北往南递减。北部烃源灶油气经断层、砂体长距离阶梯式向南部斜坡边缘运移。盆地最主要圈闭类型为背斜、断块、地层和岩性圈闭。Oficina组构造、构造—地层、地层圈闭组合和Naricual组构造圈闭组合是盆地内最主要的两套成藏组合。有潜力的勘探领域包括白垩系—下中新统被动边缘沉积层序、盆地中部前渊区、南部重油带和东部海域。  相似文献   

17.
The Ionian and Gavrovo Zones in the external Hellenide fold‐and‐thrust belt of western Greece are a southern extension of the proven Albanian oil and gas province. Two petroleum systems have been identified here: a Mesozoic mainly oil‐prone system, and a Cenozoic system with gas potential. Potential Mesozoic source rocks include organic‐rich shales within Triassic evaporites and dissolution‐collapse breccias; marls at the base of the Early Jurassic (lower Toarcian) Ammonitico Rosso; the Lower and Upper Posidonia beds (Toarcian–Aalenian and Callovian–Tithonian respectively); and the Late Cretaceous (Cenomanian–Turonian) Vigla Shales, part of the Vigla Limestone Formation. These potential source rocks contain Types I‐II kerogen and are mature for oil generation if sufficiently deeply buried. The Vigla Shales have TOC up to 2.5% and good to excellent hydrocarbon generation potential with kerogen Type II. Potential Cenozoic gas‐prone source rocks with Type III kerogen comprise organic‐rich intervals in Eocene–Oligocene and Aquitanian–Burdigalian submarine fan deposits, which may generate biogenic gas. The complex regional deformation history of the external Hellenide foldbelt, with periods of both crustal extension and shortening, has resulted in the development of structural traps. Mesozoic extensional structures have been overprinted by later Hellenide thrusts, and favourable trap locations may occur along thrust back‐limbs and in the crests of anticlines. Trapping geometries may also be provided by lateral discontinuities in the basal detachment in the thin‐skinned fold‐and‐thrust belt, or associated with strike‐slip fault zones. Regional‐scale seals are provided by Triassic evaporites, and Eocene‐Oligocene and Neogene shales. Onshore oil‐ and gasfields in Albania are located in the Peri‐Adriatic Depression and Ionian Zone. Numerous oil seeps have been recorded in the Kruja Zone but no commercial hydrocarbon accumulations. Source rocks in the Ionian Zone comprise Upper Triassic – Lower Jurassic carbonates and shales of Middle Jurassic, Late Jurassic and Early Cretaceous ages. Reservoir rocks in both oil‐ and gas‐fields in general consist of silicilastics in the Peri‐Adriatic Depression succession and the underlying Cretaceous–Eocene carbonates with minimal primary porosity improved by fracturing in the Albanian Ionian Zone. Oil accumulations in thrust‐related structures are sealed by the overlying Oligocene flysch whereas seals for gas accumulations are provided by Upper Miocene–Pliocene shales. Thin‐kinned thrusting along flysch décollements, resulting in stacked carbonate sequences, has clearly been demonstrated on seismic profiles and in well data, possibly enhanced by evaporitic horizons. Offshore Albania in the South Adriatic basin, exploration targets in the SW include possible compressional structures and topographic highs proximal to the relatively unstructured boundary of the Apulian platform. Further to the north, there is potential for oil accumulations both in the overpressured siliciclastic section and in the underlying deeply buried platform carbonates. Biogenic gas potential is related to structures in the overpressured Neogene (Miocene–Pliocene) succession.  相似文献   

18.
This study investigates the hydrocarbon potential of Oligocene–Miocene shales in the Menilite Formation, the main source rock in the Ukrainian Carpathians. The study is based on the analysis of 233 samples collected from outcrops along the Chechva River in western Ukraine in order to analyse bulk parameters (TOC, Rock‐Eval), biomarkers and maceral composition. In Ukraine, the Menilite Formation is conventionally divided into Lower (Lower Oligocene), Middle (Upper Oligocene) and Upper (Lower Miocene) Members. The Early Oligocene and Early Miocene ages of the lower and upper members are confirmed by new nannoplankton data. The Lower Menilite Member is approximately 330 m thick in the study area and contains numerous chert beds and turbidite sandstones in its lower part together with organic‐rich black shales. The shales have a high content of silica which was probably derived from siliceous micro‐organisms. The TOC content of the shales frequently exceeds 20 wt.% and averages 9.76 wt.%. HI values range between 600 and 300 mgHC/gTOC (max. 800 mgHC/gTOC). The Middle Member contains thin black shale intervals but was not studied in detail. The Upper Member is about 1300 m thick in the study area and is composed mainly of organic‐rich shales. Chert layers are present near the base of the Member, and a prominent tuff horizon in the upper part represents a volcanic phase during shale deposition. The member grades into overlying molasse sediments. The average TOC content of the Upper Menilite succession is 5.17 wt.% but exceeds 20 wt.% near its base. Low Tmax and vitrinite reflectance measurements for the Lower (419°C and 0.24–0.34 %Rr, respectively) and Upper (425°C and 0.26–0.32 %Rr, respectively) Menilite Member successions indicate thermal immaturity. Biomarker and maceral data suggest a dominantly marine (Type II) organic matter input mixed with varying amounts of land‐plant derived material, and indicate varying redox and salinity conditions during deposition. Determination of the Source Potential Index (SPI) shows that the Menilite Formation in the study area has the potential to generate up to 74.5 tons of hydrocarbons per m2. The Chechva River outcrops therefore appear to have a significantly higher generation potential than other source rocks in the Paratethys realm. These very high SPI values for the Menilite Formation may explain why a relatively small area in Ukraine hosts about 70% of the known hydrocarbon reserves in the northern and eastern Carpathian fold‐thrust belt.  相似文献   

19.
The relatively well‐studied Lusitanian Basin in coastal west‐central Portugal can be used as an analogue for the less well‐known Peniche Basin in the deep offshore. In this paper the Lusitanian Basin is reviewed in terms of stratigraphy, sedimentology, evolution and petroleum systems. Data comes from published papers and technical reports as well as original research and field observations. The integration and interpretation of these data is used to build up an updated petroleum systems analysis of the basin. Petroleum systems elements include Palaeozoic and Mesozoic source rocks, siliciclastic and carbonate reservoir rocks, and Mesozoic and Tertiary seals. Traps are in general controlled by diapiric movement of Hettangian clays and evaporites during the Late Jurassic, Late Cretaceous and Late Miocene. Organic matter maturation, mainly due to Late Jurassic rift‐related subsidence and burial, is described together with hydrocarbon migration and trapping. Three main petroleum systems may be defined, sourced respectively by Palaeozoic shales, Early Jurassic marly shales and Late Jurassic marls. These elements and systems can tentatively be extrapolated offshore into the deep‐water Peniche Basin, where no exploration wells have so far been drilled. There are both similarities and differences between the Lusitanian and Peniche Basins, the differences being mainly related to the more distal position of the Peniche Basin and the later onset of the main rift phase which was accompanied by Early Cretaceous subsidence and burial. The main exploration risks are related to overburden and maturation timing versus trap formation associated both with diapiric movement of Hettangian salt and Cenozoic inversion.  相似文献   

20.
The Abu Gharadig oil- and gasfield is located in the north of the Western Desert of Egypt. In this paper, the geochemical characteristics of kerogens from Cretaceous shales at this field are described. The shale samples came from the Abu Roash Formation E and G Members (late Cenomanian- Turonian), the Bahariya Formation (early Cenomanian) and the Betty Formation (Neocomian- Barremian). Kerogen type and quality was evaluated by optical microscopy and by standard methods (elemental analysis, infrared spectroscopy and Rock-Eval pyrolysis). The results show that the shale samples analysed contain fair to high quantities of organic matter, and that this takes the form of marine amorphous sapropelic and structured liptinite macerals which can be classified as Types I and II kerogens.
Maturation indicators and burial history curves indicate that shales from the Abu Roash E and G Members are currently located in the oil-generation window. Oil generation in these units has taken place since the late Palaeocene-early Eocene—i.e. since the formation of structural traps in the Abu Gharadig area, which occurred in the Maastrichtian—Eocene. Shales in the Bahariya and Betty Formations passed through the oil window during the Late Cretaceous before the traps were formed, but the shales reached the wet-gas zone in the late Miocene - early Pliocene.
Most of the liquid hydrocarbons in the Abu Gharadig field are sourced by Cretaceous shales in the Abu Roash E and G Members; and most gas is generated by shales in the underlying Bahariya and Betty Formations. The Jurassic Khatatba Formation may also have generated some gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号