首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zopolrestat (Alond) is a new drug that is being evaluated as an aldose reductase inhibitor for the treatment of diabetic complications. 14C-labeled zopolrestat was orally administered to rats for a tissue distribution study and a bile duct cannulation metabolism study. Tissue samples from the distribution study were analyzed by complete oxidation and liquid scintillation counting. Urine and bile samples from the bile duct cannulation study were analyzed by microbore HPLC, with simultaneous radioactivity monitoring and atmospheric pressure ionization tandem mass spectrometry. The mass balance in the distribution study demonstrated that the greatest exposure (AUC0-infinity) occurred in the liver, followed by the ileum and large intestine. The time of maximal plasma concentrations for nearly all tissues was 4 hr after the dose, and the half-life of radioactivity in most tissues (8-10 hr) was similar to the half-life in plasma. For the bile duct-cannulated rat study, most of the radioactivity was recovered in the bile, indicating that biliary excretion is a major route of elimination of zopolrestat and its metabolites in rats. Numerous oxidative metabolites, as well as phase II conjugates, were identified in the bile and urine samples. Acyl glucuronides of zopolrestat and unchanged drug accounted for >85% of biliary radioactivity, whereas unchanged drug and degradation products of glutathione conjugates were identified as the major urinary metabolites.  相似文献   

2.
There is evidence indicating that the carbapenem antibiotic panipenem decreases plasma concentrations of valproic acid (VPA) in epileptic patients during VPA therapy. The mechanism for panipenem-induced changes in the pharmacokinetics of VPA was investigated in rats with and without bile duct cannulation. The effect of panipenem on the pharmacokinetics of diclofenac, which undergoes extensive enterohepatic recirculation, was also examined. VPA (50 mg/kg of body weight) or diclofenac (10 mg/kg of body weight) was administered intravenously under the steady-state plasma panipenem concentration of 4 microgram/ml, which had been achieved by a constant infusion rate. Panipenem decreased the plasma VPA concentrations in rats without bile duct cannulation but did not change the volume of the initial space and protein binding of VPA. However, panipenem had no effect on the plasma VPA concentrations and the biliary excretion of VPA in rats with bile duct cannulation. The secondary increase in plasma diclofenac concentration observed in the absence of panipenem was diminished in the presence of panipenem. These findings suggest that panipenem decreases plasma VPA concentrations by suppressing its enterohepatic recirculation, probably due to a panipenem-induced decrease in the numbers of enteric bacteria.  相似文献   

3.
The pharmacokinetics of diclofenac, which is definitely subject to enterohepatic circulation in rats, was evaluated. The pharmacokinetic model for enterohepatic circulation was constructed in the Laplace-transformed domain by means of the transfer function method of the signal flow. The transformed equations were simultaneously fitted to the time courses of plasma concentration averaged over two groups of rats [i.e. one with an intact enterohepatic circulation and the other without an enterohepatic circulation by means of the bile duct cannula (double-lines fitting)]. The transformed equations were also fitted to each plasma time course in the individual rat (single-line fitting). It was demonstrated that the estimated pharmacokinetic parameters by the single-line fitting almost coincided with those by the double-lines fitting. The local moments for a single pass through enterohepatic circulation were also calculated from the time courses of both the plasma concentration and the amount excreted into the bile. In the nonanesthetized group, the recirculation ratio (Fc) and the mean recirculation time (tc) of diclofenac were estimated to be 21.1% and 4.5 hr, respectively. The absorption ratio (Fa) and the mean absorption time (ta) from the intestinal tract were 52.2% and 4.29 hr, respectively. The experiments using bile duct cannulation revealed that the total amounts excreted into the bile were 14.4% in the anesthetized group and 40.4% in the nonanesthetized group of rats, and that diclofenac was excreted 95% as the glucuronide form and 5% as the intact form in both groups.  相似文献   

4.
The terminal elimination rate of radioactivity from the bile of bile-duct cannulated rats, that had received hexachlorophene-14C via the hepatic portal vein, had an apparent first-order half-life of about 10 hr. Tissue distribution studies in these rats indicated that 35-47% of the carbon-14 of the dose was eliminated through the bile within 24 hr. Significant amounts of radioactivity were also found in the liver and carcass at that time; the brain was the only tissue that did not consistently have much higher concentrations of carbon-14 than the blood. The rate limiting step in the disposition of hexachlorophene may be excretion into the bile. A bile-feeding technique demonstrated enterohepatic circulation.  相似文献   

5.
The disposition of L-694,458, a potent monocyclic beta-lactam inhibitor of human leukocyte elastase, was studied in male Sprague-Dawley rats and rhesus monkeys. After iv dosing, L-694,458 exhibited similar pharmacokinetic parameters in rats and rhesus monkeys. The mean values for its plasma clearance, terminal half-life, and volume of distribution at steady state were 27 ml/min/kg, 1.8 hr, and 4.0 liters/kg in rats and 34 ml/min/kg, 2.3 hr, and 5 liters/kg in rhesus monkeys. The bioavailability of a 10 mg/kg oral dose was higher in rats (65%) than in rhesus monkeys (39%). In both species, concentrations of L-694,458 in plasma increased more than proportionally when the oral dose was increased from 10 mg/kg to 40 mg/kg. In monkeys a protracted plasma concentration-time profile was observed at 40 mg/kg, characterized by a delayed T(max) (8-24 hr) and a long terminal half-life (6 hr). [3H]L-694,458 was well absorbed after oral dosing to rats at 10 mg/kg, as indicated by the high recovery of radioactivity in bile (83%) and urine (6%) of bile duct-cannulated rats. Only approximately 5% or less of the radioactivity in bile, urine, and feces was a result of intact L-694,458, indicating that the compound was being eliminated by metabolism, followed by excretion of the metabolites in feces, via bile. Demethylenation of the methylenedioxyphenyl group resulting in the catechol was the primary metabolic pathway in human and rhesus monkey liver microsomes. In rat liver microsomes, the major metabolite was the N-oxide of the methyl-substituted piperazine nitrogen. In rats dosed iv and orally with [3H]L-694,458, concentrations of radioactivity were highest in the lung (the primary target tissue), adrenals, and liver. L-694,458 was unstable in rat blood and plasma, degrading via a pathway believed to be catalyzed by B-esterases and to involve cleavage of the beta-lactam ring and loss of the methylpiperazine phenoxy group. In vitro studies indicated that in human liver, L-694,458 was metabolized by CYP3A and 2C isozymes, and in both monkey and human liver microsomes the compound acted as an inhibitor of testosterone 6beta-hydroxylation.  相似文献   

6.
The pharmacokinetics of intravenously administered 14C-delta9-tetrahydrocannabinol and derived radiolabeled metabolites were studied in three dogs at two doses each at 0.1 or 0.5 and 2.0 mg/kg. Two dogs were biliary cannulated; total bile was collected in one and sampled in the other. The time course for the fraction of the dose per milliliter of plasma was best fit by a sum of five exponentials, and there was no dose dependency. No drug was excreted unchanged. The mean apparent volume of distribution of the central compartment referenced to total drug concentration in the plasma was 1.31 +/- 0.07 liters, approximately the plasma volume, due to the high protein binding of 97%. The mean metabolic clearance of drug in the plasma was 124 +/- 3.8 ml/min, half of the hepatic plasma flow, but was 4131 +/- 690 ml/min referenced to unbound drug concentration in the plasma, 16.5 times the hepatic plasma flow, indicating that net metabolism of both bound and unbound drug occurs. Apparent parallel production of several metabolites occurred, but the pharmacokinetics of their appearance were undoubtedly due to their sequential production during liver passage. The apparent half-life of the metabolic process was 6.9 +/- 0.3 min. The terminal half-life of delta9-tetrahydrocannabinol in the pseudo-steady state after equilibration in an apparent overall volume of distribtuion of 2170 +/- 555 liters referenced to total plasma concentration was 8.2 +/- 0.23 days, based on the consistency of all pharmacokinetic data. The best estimate of the terminal half-life, based only on the 7000 min that plasma levels could be monitored with the existing analytical sensitivity, was 1.24 days. However, this value was inconsistent with the metabolite production and excretion of 40-45% of dose in feces, 14-16.5% in urine, and 55% in bile within 5 days when 24% of the dose was unmetabolized and in the tissue at that time. These data were consistent with an enterohepatic recirculation of 10-15% of the metabolites. Intravenously administered radiolabeled metabolites were totally and rapidly eliminated in both bile and urine; 88% of the dose in 300 min with an apparent overall volume of distribution of 6 liters. These facts supported the proposition that the return of delta9-tetrahydrocannabinol from tissue was the rate-determining process of drug elimination after initial fast distribution and metabolism and was inconsistent with the capability of enzyme induction to change the terminal half-life.  相似文献   

7.
A mini T-tube is introduced for the bile duct anastomosis of rat liver transplantation as well as interval bile collection. The validity of the T-tube was evaluated in 14 liver-transplanted rats and compared to 14 rats using traditional stent for bile duct anastomosis. Changes of biliary tree after the T-tube anastomosis were examined by T-tube cholangiography on sample rats at 4 days and at 4 months after liver grafting. Additionally, bile volumes and rates of bile salt secretion were compared in the continuously flowing cannula and the chronic T-tube fistula in normal rats. The results show that the mini T-tube facilitates bile duct anastomosis and study of bile secretion after liver transplantation in rats without increase in surgical difficulty or interference of biliary enterohepatic circulation.  相似文献   

8.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pancreas carcinogen in rats. The biliary excretion of NNK was therefore studied in anesthetized female Sprague-Dawley rats following i.p. administration of 0.7 mumol/kg [carbonyl-14C]NNK. The concentration of radioactivity peaked within 30 min and decreased thereafter exponentially. Cumulative excretion of radioactivity reached a plateau at 6-9% of the total dose. HPLC analysis revealed the presence of 4-hydroxy-4-(3-pyridyl)butyric acid (hydroxy acid), 4-oxo-4-(3-pyridyl)-butyric acid (keto acid), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butyl beta-D-glucopyranosiduronic acid (NNAL Glu), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and NNK. NNAL Glu was the major metabolite contributing 34 +/- 4% of total radioactivity in bile at 30 min and 58 +/- 4% at 5 h. The percentage of acidic metabolites remained constant at approximately 20%. In contrast, the percentage of NNK and NNAL decreased within the first 2 h to < 5% and < 10% respectively. The elimination kinetics of NNK and its metabolites fitted into a one-compartment model with a half-life of 37 min for NNK, 52 min for NNAL and 110 min for NNAL Glu and acidic metabolites. In three rats dosed with 240 mumol/kg NNK i.p., the concentration of radioactivity peaked after 1-2 h and decreased very slowly thereafter. After 5-8 h a total of 12-17% of the dose has been excreted in the bile with no indication of a plateau. At all time points NNAL Glu was the major metabolite contributing up to 95% of total radioactivity in bile. The percentage of acidic metabolites was < 5% throughout the experiment. Whereas NNK contributed one-third of the radioactivity at 30 min and decreased rapidly, the percentage of NNAL in bile remained rather constant at approximately 5-10%. In conclusion, the detection of NNK, NNAL and NNAL Glu gives support to the hypothesis that tobacco-specific carcinogens could reach the pancreas retrograde from the bile, especially at high NNK concentrations.  相似文献   

9.
The rate of excretion of aldosterone radiometabolites into the bile duct cannulation, and the intravenous injection of (3H)aldosterone, was demonstrated to be markedly increased in male rats following castration. In 1 h, 72% of the injected 3H-radioactivity was excreted in the bile of castrated male rats compared with 26% in the intact male control rats. Castration of the males led to the increased biliary excretion of aldosterone metabolites and the elimination of the sex-dependence of this process in rats. The ovariectomy of female rats did not substantially increase the rate of excretion of aldosterone metabolites via the bile. Castrated male rats treated with testosterone excreted aldosterone metabolites into the bile at a slower rate. A similar treatment of ovariectomized female rats with testosterone also significantly slowed the rate of biliary excretion of the aldosterone metabolites. These findings suggest that the presence of androgens plays an important role in regulating the routes of hepatic metabolism of aldosterone and the rates of clearance of aldosterone and its metabolites from the plasma into the bile of rats.  相似文献   

10.
The pharmacokinetic behaviour as well as metabolization of 3-butoxy - 1 - phenoxy-propanol-(2) (febuprol) in rats and mice were studied. In addition, binding on human protein and in vitro absorption were determined. The distribution of tritium labelled Febuprol in the body after oral administration was studied in rats and mice: the product was found to circulate in enterohepatic circulation, including the intestines, liver and kidney, and, in the case of mice, also the gall bladder, whereas other organs or tissues show no activity. Upon oral adminstration over 90% Febuprol are absorbed via gastro-intestinal tract and as metabolites 85% of the substance were eliminated via bile, 4% via urine. The rate of metabolisation is high. Via bile only 0.2%, via urine only 0.6% unaltered Febuprol are excreted. Mainly conjugated Febuprol and hydroxy-Febuprol are found as metabolites. By means of the Sartorius absorption model Febuprol yeilded a rate constant common to pharmaceutical substances which are absorbed at a medium rate. This constant does not depend on the pH-range. The buccal tests and the distribution coefficients show the same results.  相似文献   

11.
Two surgical biliary cannulation procedures for study of enterohepatic circulation in chronically cannulated rats were compared in a randomized study. Control rats (group A) had only a jugular vein cannula and no laparotomy, whereas experimental group-B rats additionally had the bile duct cannulated at two locations, one for collecting bile from the liver and the other for returning bile into the duodenum. Experimental group-C rats had the jugular vein cannula as well as the bile duct cannula for collecting bile, but the duodenal wall was cannulated for returning bile to the intestine. Several physiologic and biochemical indicators were monitored daily after surgery, including body weight, bile flow rate, and plasma concentrations of bilirubin and creatinine, and activities of glutamate-pyruvate transaminase (GPT) and lipase. Overall duration of survival of group-B rats was shorter than that of group-A rats (P < 0.05), whereas no difference was found between groups A and C. Group-B rats had higher bilirubin concentration than did controls (P < 0.05), whereas group-C rats did not. Group-B rats had higher plasma lipase activity than did rats of the other two groups, and this analyte was more variable in group-B rats. Rats of groups B and C had high GPT activity after surgery (P < 0.05). A statistically significant loss of body weight was associated with group-B rats over 8 days after surgery and for group-C rats over 2 days after surgery, after which body weight stabilized in group-C rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The excretion and metabolism of [3H]tipredane, a novel glucocorticoid, has been studied in mice, rats, marmosets, rhesus and cynomolgus monkeys, and humans. After oral administration, [3H]tipredane was rapidly absorbed, metabolized, and excreted into urine and feces. In mice and male rats, radioactivity was excreted primarily into feces or bile, whereas in female rats, monkeys, and humans, excretion was mainly via the renal route. Some sex differences in the proportions excreted into urine and feces were noted in rodents, with females eliminating relatively more radioactivity in urine. Tipredane was shown to be extensively metabolized, but the routes were highly species-dependent and, in the rat, they were sex-dependent. Unchanged tipredane was not detected in any urine, bile, or blood extracts. Urinary and blood extract profiles indicated that there were between 10 and 30 metabolites in rats and mice, the majority of which constituted < 2% of the dose. In these species, the major pathways involved loss of the thioethyl moiety, S-oxidation of the thiomethyl group, and saturation of the adjacent saturated C16-17 bond. Hydroxylation of the steroid B-ring was seen in the 7 alpha-position in mice and female rats, and in the 6 beta-position in male rats. Metabolism of tipredane in rhesus and cynomolgus monkeys and humans was similar, but less extensive and different to that seen in rodents. The major products, the 6 beta-hydroxylated sulfoxide and sulfone metabolites of tipredane, accounted for 21-36% of the dose in human and monkey urine, and were also major components in blood. In contrast to mice and rats, S-oxidation and an unsaturated C16-17 bond were evident in primates. Metabolism of tipredane was rapid and complex, with significant species differences, although the disposition in rhesus and cynomolgus monkeys seemed to be similar to humans.  相似文献   

13.
1. An oral dose of the coronary vasodilator 4-(3,4,5-trimethoxy[14C]cinnamoyl)-1-(N-pyrrolidinocarbonylmethyl)piperazine was well absorbed and more than 60% of the dose was excreted within 24 h. In 5 days, rats, dogs, and man excreted in the urine and faeces respectively 36.7% and 58.3%, 33.4% and 68.6%, and 61.3% and 38.1% dose. Faecal radioactivity was probably excreted via the bile. 2. Plasma concentrations of radioactivity reached a maximum within about 1 h in all three species and declined fairly rapidly (t0.5 less than 3 h). For several hours, more than 50% of the plasma radioactivity was due to unchanged drug. After correction for dose and body weight (normalization), peak plasma concentrations of unchanged drug in man, rat and dog were in the approximate ratio 100 :30:1. 3. Similar metabolites were excreted by the three species, but the relative proportions differed. Rats and man excreted 17.2% and 15.9% respectively as unchanged drug in the urine whereas dogs excreted only 3.6%. Rat bile and urine contained 4.3% and 9.8% dose respectively as glucuronides of the mono-O-demethylated compounds and dog and human urine contained 9.0% and 2.6% respectively of these metabolites. The corresponding pyrrolidone accounted for 2.5%, 5.5% and 5.1% respectively in rat, dog and human urine. Complete O-demethylation also occurred since 4-(3,4,5-trihydroxycinnamoyl)-1-(N-pyrrolidinocarbonylmethyl)piperazine was present in rat faeces (22.1% dose).  相似文献   

14.
The disposition of S-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid (CAS 155680-07-2, S-MTPPA, code: M-5011) was studied after oral administration to rats, dogs and monkeys using the 14C-labeled drug. After oral dosing, S-MTPPA was well absorbed from the gastrointestinal tract, to the extent of 97.7% in rats. The concentration of S-MTPPA in rat plasma reached a peak (Cmax: 13.07 micrograms/ml) at 15 min (tmax) after dosing and declined with a half-life (t1/2) of 2.5 h. The values of the parameters tmax, Cmax and t1/2 for dogs were 30 min, 26.2 micrograms/ml and 7.0 h, and those for monkeys were 15 min, 12.8 micrograms/ml and 3.0 h, respectively. The radioactivity was widely distributed in tissues and almost completely excreted in urine and feces within 48 h after oral administration to rats. The excretion of radioactivity in bile, urine and feces within 48 h after oral administration of 14C-S-MTPPA to bile duct-cannulated rats amounted to 75.0, 18.6 and 1.4% of the dose, respectively. The drug was metabolized mainly by oxidation of the thiophenyl moiety and by glucuronidation of the carboxyl group in rats and monkeys. The major urinary and fecal metabolite in dogs was identified as the taurine conjugate of MTPPA.  相似文献   

15.
The pharmacokinetics of valproic acid (VPA) and three structural analogs, octanoic acid (OA), cyclohexanecarboxylic acid (CCA), and 1-methyl-1-cyclohexanecarboxylic acid (MCCA), were examined in female Sprague-Dawley rats. All four carboxylic acids evidenced dose-dependent disposition. A dose-related decrease in total body clearance was observed for each test compound, suggesting the presence of saturable elimination processes. Furthermore, the apparent volume of distribution for these compounds was, with the exception of CCA, dose-dependent, indicating that binding to proteins in serum and/or tissues may be saturable. Both VPA and MCCA exhibited enterohepatic recirculation, although the degree of recirculation appeared to be dose- and compound-dependent. Significant quantities of both VPA and MCCA were excreted in the urine as base-labile conjugates, presumably representing glucuronides. In contrast, OA and CCA were not excreted in the urine as base-labile conjugates and did not evidence enterohepatic recirculation. CCA displayed apparent Michaelis-Menten kinetics, although the calculated Km was dose-dependent. The results suggest that relatively minor changes in chemical structure have a marked influence on the metabolism and disposition of low molecular weight carboxylic acids.  相似文献   

16.
The absorption, concentrations in plasma, metabolism and excretion of ramatroban ((+)-(3R)-3-(4-fluorophenylsulfonamido)-1,2,3,4-tetrahydro-9- carbazolepropanoic acid, CAS 116649-85-5, BAY u 3405) have been studied following a single intravenous, oral, or intraduodenal administration of 14C-labeled or nonlabeled compound to rats and dogs (dose range: 1-10 mg.kg-1). After intraduodenal administration of [14C]ramatroban, enteral absorption of radioactivity was rapid and almost complete both in bile duct-cannulated male rats (83%) and female dogs (95%). The oral bioavailability of ramatroban was complete in the dog but amounted to about 50% in the rat due to presystemic elimination. A marked food effect on the rate but not on the extent of absorption was observed in rats. The elimination of the parent compound from plasma occurred rapidly with total clearance of 1.2 l.h-1.kg-1 in male rats and 0.7 l.h-1.kg-1 in dogs. After oral administration to male rats AUC increased dose-proportionally between 1 and 10 mg.kg-1, whereas in Cmax an over-proportional increase was observed. Excretion of total radioactivity was fast and occurred predominantly via the biliary/fecal route in both species. The residues were low, 144 h after dosing less than 0.2% of the radioactivity remained in the body of rats. A considerable sex difference was found in rats following oral administration of ramatroban. In females a 3-fold higher AUC and a 1.7-fold longer half-life of unchanged compound, as well as 3-fold higher renal excretion of total radioactivity was observed. A marked species difference exists in the metabolism of ramatroban. In dogs the drug was almost exclusively metabolized via conjugation with glucuronic acid, whereas in rats oxidative phase I metabolism and glucuronidation were equally important. As a consequence enterohepatic circulation was much more pronounced in dogs (77%) than in rats (17% of the initial dose).  相似文献   

17.
Female rats were dosed intraperitoneally with 14C-hexaxhlorobenzene. The drug was administered on 2 or 3 occasions. The total doses amounted to 260 and 390 mg/kg 14C-hexachlorobenzene, respectively. Urine and feces from the animals were collected over a period of 4 weeks after the first injection. Both excreta and some tissues of the animals were examined for their content of radioactivity and for hexachlorobenzene and its metabolites. Gas chromatography, isotope dilution analysis, and combined gas chromatography-mass spectrometry were used to identify the metabolites of hexachlorobenzene. In urine pentachlorophenol, tetrachlorohydroquinone, and pentachlorothiophenol were present as major metabolites. One of the isomers of tetrachlorothiophenol was present as a minor metabolite. In the feces pentachlorophenol and pentachlorothiophenol only were identified. At the end of the experiment, carbon-14 excreted with urine and feces amounted to 7% and 27%, respectively, of the radioactivity administered. More than 90% of carbon-14 excreted in urine was contained in the major metabolites. In the feces about 30% of the excreted radioactivity was bound to metabolites and about 70% was contained in the unchanged drug, while in the tissues of the animals only pentachlorophenol was detected in measurable amounts, accounting for 10% of label in blood and less than 0.1% of carbon-14 determined in body fat. Total radioactivity contained in the metabolites detected in the animal body and in the excreta at the end of the experiment accounted for about 16% of the administered radioactivity.  相似文献   

18.
Urinary metabolites and the pharmacokinetics of radioactivity derived from 14C-metronidazole (14C-MTZ) were determined after intravenous (iv) or intravaginal (ivg) administration of 10 mg/kg to adult rats. Following iv or ivg administration, the disappearance of 14C from blood followed the kinetics of a two-compartment open-system model. The blood half-lives of 14C during the beta-phase were 10.9 +/- 1.6 and 13.6 +/- 4.2 hr, after iv and ivg administration, respectively. After ivg application, the MTZ-derived radioactivity was detected in tail blood at 5 min, peaked at 1 hr, declined rapidly to 6 hr and more slowly thereafter. The vaginal absorption half-life of 14C-MTZ was 0.28 +/- 0.09 hr. About 12% of the administered dose remained in the vagina after 1 hr and 1.5% after 24 hr. At 24 hr, the tissue distribution and concentration of 14C were similar in iv and ivg dosed rats, the highest 14C concentration being present in the kidneys and lowest in the fat. The percentages of the dose excreted in 24 hr in the urine and feces were 58 and 15 after iv administration, compared to 37 and 40 after the ivg route, respectively. Unchanged 14C-MTZ and five of its metabolites were detected in the urine irrespective of the route of administration. The results show that metronidazole is rapidly absorbed through the vaginal mucosa of the rat and the metabolism and excretion of this chemotherapeutic agent are influenced by the route of administration.  相似文献   

19.
[3H]-testosterone undecanoate ([3H]TU) was administered orally to 4 patients with a thoracic duct catheter after neck dissection surgery. Appearance of radioactivity in lymph, plasma and urine was measured at different times. Metabolites of TU in these fluids were investigated. Peak levels of radioactivity appeared simultaneously in lymph and plasma (2.5-5 h after administration) while the excretion in urine was highest approximately 2 h after the plasma and lymph peak. The main compounds appearing in the lymph were TU and 5alpha-dihydrotestosterone undecanoate (5alpha-DHTU), but 5beta-DHTU could not be detected. In plasma almost all metabolites were probably conjugated. During the first 24 h approximately 40% of the administered radioactivity was excreted in the urine. The total amount of radioactivity excreted in the urine during the first week was 45-48%. The predominant urinary metabolites were testosterone- and androsterone-glucuronide. The results indicate that TU is metabolized partly in the intestinal wall. The remaining TU and newly-formed 5alpha-DHTU, at least partly, are absorbed via the lymphatic system.  相似文献   

20.
The metabolism and excretion of a new anxiolytic/antidepressant drug candidate, CP-93,393, ((7S, 9aS)-1-(2-pyrimidin-2-yl-octahydro-pyrido[1, 2-a]-pyrazin-7-yl-methyl)-pyrrolidine-2,5-dione) were investigated in cynomolgus monkeys after oral administration of a single 5 mg/kg dose of 14C-CP-93,393. Urine, bile, feces, and blood samples were collected and assayed for total radioactivity, parent drug, and metabolites. Total recovery of the administered dose after 6 days was 80% with the majority recovered during the first 48 hr. An average of 69% of the total radioactivity was recovered in urine, 4% in bile, and 7% in feces. Mean Cmax and AUC(0-infinity) values for the unchanged CP-93,393 were 143.2 ng/ml and 497.7 ng.hr/ml, respectively, in the male monkeys and 17.2 ng/ml and 13.7 ng.hr/ml, respectively, in the female monkeys. HPLC analysis of urine, bile, feces, and plasma from both male and female monkeys indicated extensive metabolism of CP-93,393 to several metabolites. The identification of metabolites was achieved by chemical derivatization, beta-glucuronidase/sulfatase treatment, and by LC/MS/MS, and the quantity of each metabolite was determined by radioactivity detector. CP-93,393 undergoes metabolism by three primary pathways, aromatic hydroxylation, oxidative degradation of the pyrimidine ring, and hydrolysis of the succinimide ring followed by a variety of secondary pathways, such as oxidation, methylation, and conjugation with glucuronic acid and sulfuric acid. The major metabolites, oxidation on the pyrimidine ring to form 5-OH-CP-93,393 (M15) followed by glucuronide and sulfate conjugation (M7 and M13), accounted for 35-45% of the dose in excreta. Two metabolites (M25 and M26) were formed by further oxidation of M15 followed by methylation of the resulting catechol intermediate presumably by catechol-O-methyl transferase. A novel metabolic pathway, resulting in the cleavage of the pyrimidine ring, was also identified. The metabolites (M18, M20, and M21) observed from this pathway accounted for 8-15% of the dose. Aliphatic hydroxylation of the succinimide ring was a very minor pathway in monkey. 5-Hydroxy-CP-93,393 (M15, 37-49%), its sulfate and glucuronide conjugates (M7 and M13, approximately 34%), and the pyrimidine ring cleaved product (M18, approximately 8%) were the major metabolites in monkey plasma. The identified metabolites accounted for approximately 90, 93, 97, and 92% of the total radioactivity present in urine, bile, plasma, and feces, respectively. The major in vivo oxidative metabolites were also observed after in vitro incubations with monkey liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号