共查询到19条相似文献,搜索用时 46 毫秒
1.
为了解决分拣搬运机器人在路径规划过程中,遇到目标点众多的情况时存在路径寻优效率低、容易出错等问题。针对A*算法存在多个最小值时,无法实现路径最优化的问题进行研究,提出一种将蚁群算法与A*算法相结合的改进A*算法。首先使用A*算法筛选出一条最优化的路线来分布信息素,从而简化A*算法在路径规划上的运算。其次以筛选出的路线为基础,针对不同情况结合蚁群算法设计了三种通用方案,以此为基础进行具体的路径规划,从而解决A*算法本身存在的容易带入大量重复数据的问题。通过仿真与实际实验验证了本文提出的改进的A*算法能够满足自动分拣搬运的需求,值得推广与使用。 相似文献
2.
提出了一种静态环境下机器人路径规划的改进蚁群算法.该算法使用栅格法对机器人的工作空间进行建模,通过模拟蚂蚁的觅食行为,采用折返的迭代方式对目标进行搜索;在搜索过程中,以移动方向一定范围内最大信息素和目标引导函数作为启发式因子;此外,根据蚁群算法处理本问题时信息素散播的特点,重构了信息素的更新策略和散播方式.仿真试验结果表明,改进措施使最优路径的寻找快速而高效,即使在障碍物非常复杂的环境下,算法也能迅速地规划出一条最优路径. 相似文献
3.
基于改进蚁群算法的机器人路径规划 总被引:1,自引:0,他引:1
本文主要结合蚁群算法对机器人路径规划进行了系统的研究。针对蚂蚁在搜索路径过程中落入障碍物陷阱而造成算法停滞的现象,提出了蚂蚁系统回退策略。为了检验改进型算法的性能,基于MATLAB软件设计了仿真程序。仿真结果表明:对基本蚁群算法的改进,提高了算法的有效性和鲁棒性,增强了蚁群算法在机器人路径规划中的适应能力。 相似文献
4.
该文将蚁群算法运用到机器人全局路径规划上,主要针对蚂蚁算法在搜索路径过程中落入障碍物陷阱而造成算法停滞的现象,提出了改进策略,同时基于对机器人所处环境的表示方法及算法中对应问题的描述和定义的研究,对相关参数进行了改进探讨。通过对算法的改进,增强了机器人的蚁群算法在复杂环境路径规划下的适应能力。 相似文献
5.
针对传统搬运机器人路径规划方法易陷入局部最优解,以及缺乏对环境普遍适应性的问题。应用栅格法创建搬运机器人工作环境模型,以一种建立搜索禁忌表的改进贪心算法为基础,通过加入遗传算法中“优胜劣汰”的思想,重新定义了模拟退火系数和栅格系数,提出了一种可以解决贪心算法局部收敛问题的改进模拟退火算法。最后通过仿真和具体实物实验,验证了该算法具有的可行性以及对于不同环境的适应性,能够有效地提高搬运机器人路径规划的质量。 相似文献
6.
针对蚁群算法在机器人路径规划过程中出现的收敛速度慢的缺陷,提出了基于改进蚁群算法规划机器人全局路径,在栅格地图中划定优选区域,并建立新的初始信息素浓度设置模型,对各点初始信息素浓度进行差异化设置,避免寻优的盲目性,提高了算法的收敛速度。实验结果表明,改进后的蚁群算法的收敛速度明显加快,优于传统算法,表明了该算法的有效性。 相似文献
7.
用栅格模型表示工作环境,确定机器人运动起始结点和目标结点后,对工作环境进行分析,选取起始点与目标点之间连线附近的若干栅格,以被选取栅格为关键点,采用蚁群算法分别计算关键点与起始点和目标节点之间的最短路径,求取全局最短路径。仿真验证,该方法简单有效。 相似文献
8.
蚁群算法具有较强的鲁棒性和发现较优解的能力,但同时存在着限于局部最优解、收敛速度慢、容易出现停滞现象等缺点。本文针对球形机器人的特点,考虑球形机器人本身的尺寸影响,对其进行路径规划优化处理。并且在传统的蚁群算法基础上,采用了退回原则和信息素加强原则对该算法进行改进。通过仿真结果表明,该方法能以任意接近于1的概率收敛到全局最优解,并且提高了求解最优解的效率。 相似文献
9.
蚁群算法具有较强的鲁棒性和发现较优解的能力,但同时存在着限于局部最优解、收敛速度慢、容易出现停滞现象等缺点。本文针对球形机器人的特点,考虑球形机器人本身的尺寸影响,对其进行路径规划优化处理。并且在传统的蚁群算法基础上,采用了退回原则和信息素加强原则对该算法进行改进。通过仿真结果表明,该方法能以任意接近于1的概率收敛到全局最优解,并且提高了求解最优解的效率。 相似文献
10.
11.
12.
13.
足球机器人路径规划算法的研究及其仿真 总被引:2,自引:0,他引:2
研究足球机器人路径规划优化问题,足球机器人由于赛场情况千变万化,系统本身存在非线性,环境也具有时变性特点,要求机器人相互协作实时性要求高。结合足球机器人系统特点,提出一种蚁群算法的足球机器人路径规划算法。把每一只蚂蚁看作是一个机器人,蚂蚁根据信息素调整自己的前进方向,通过蚂蚁间的信息交流和相互协作快速找到一条最短的机器人运行无碰撞的路径。采用算法进行测试,结果表明,用蚁群算法较好地克服了局部最优的缺陷,获得最优路径,且无碰撞现象,符合足球机器人路径规划的实时性要求。 相似文献
14.
为实现水下无人机在水域中自主作业的功能,对其设计一套合理的路径规划方案是非常有必要的。蚁群算法针对水下无人机路径规划方面有着非常好的效果,拥有不错的鲁棒性,但是传统的蚁群算法在解决路径规划问题时很容易出现局部最优解的问题。以传统蚁群遗传算法理论为根据,对其进行添加目标引导素、构建精英蚂蚁体系、更新信息素浓度这三方面的改进,使用栅格法构建水下环境分析模型,并以最短的路径为目的,规划一条从初始状态到目标状态的无碰安全途径,运用仿真的办法展开验证。结果显示:相较于传统算法,改进后的算法在求解速度和全局求解能力上有较大的优势。 相似文献
15.
几种新型仿生优化算法的比较研究 总被引:7,自引:0,他引:7
仿生优化算法是模拟自然界中生物行为的随机搜索算法,可以用来解决现实中的许多优化问题.简要介绍了目前比较流行的四种新型仿生优化算法(蚁群算法、微粒群算法、人工免疫算法以及人工鱼群算法)的基本原理;然后深入分析了这些仿生优化算法的异同之处:这些算法都是一类不确定的算法,都是一类概率型的全局优化算法,都不依赖于优化问题本身的严格数学性质,都是一种基于多个智能体的智能算法,都具有本质并行性、突现性、进化性和稳健性,其不同性则主要体现在算法本身上;最后对这些仿生优化算法今后的发展方向进行了评述与展望. 相似文献
16.
电厂热工过程参数辨识 总被引:2,自引:0,他引:2
研究了电厂热工过程参数辨识问题。针对传统的蚁群算法在热工过程参数辨识中运行迭代时间长,而且存在容易出现早熟现象而陷入局部最优解的缺陷,提出了用人工免疫蚁群算法对电厂热工过程进行参数辨识的方法。将人工免疫的思想引入到传统的蚁群算法中,将特征信息作为疫苗注射给"蚂蚁",使"蚂蚁"具有免疫能力,新算法模型克服了传统蚁群算法的缺点。用新算法对电厂热工过程参数辨识的仿真结果表明,新算法有效避免了算法出现停滞的现象,提高了算法全局搜索能力和辨识的准确度。 相似文献
17.
18.
基本蚁群算法在航迹规划的应用中缺乏足够的鲁棒性,存在收敛性能较差的问题,针对基本蚁群算法容易出现局部停滞的现象,提出了一种自适应蚁群算法的救援直升机航迹规划方法,建立了救援距离最短和救援效率最高的数学模型.为了保持搜索的平衡性和收敛性,自适应蚁群算法从信息素挥发系数和信息索强度两个方面动态地调整信息素,并根据救援目标的紧急程度对信息素参数化.仿真结果表明,改进的蚁群算法避免了出现局部最优,有效地提高了搜索收敛速度. 相似文献
19.
在无线传感器网络的节点定位技术中,通过移动锚节点定位是比较实用的定位方法,移动锚节点定位需要考虑移动路径问题,路径规划合理有效,可以获得较高的定位精度。若将传感器节点看作图的顶点,利用解决TSP的思想结合蚁群算法来寻找一条最佳路径,通过理论分析及仿真实验可知,该方法形成的路径可以很好地覆盖整个网络,很好地适应无线传感器网络节点随机分布时的节点定位。 相似文献