首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
《食品与发酵工业》2016,(11):225-230
以麻竹笋笋壳为原料,采用醋酸法提取笋壳木质素。通过单因素试验及响应面分析,探讨提取时间、盐酸添加量、液料比和醋酸体积分数对木质素提取率的影响,并对提取的醋酸木质素基本成分及抗氧化活性进行研究。结果表明:醋酸木质素提取的最佳工艺参数为,提取时间80 min,HCl添加量6%,液料比20∶1(m L∶g),醋酸体积分数86.95%。该条件下笋壳木质素提取率达到73.58%(相对于Klason木质素含量),且木质素的纯度达到89.70%,含有少量的碳水化合物(2.96%)。醋酸木质素的DPPH自由基清除指数(RSI)值为1.61,显著高于商业合成抗氧化剂BHT的RSI值(0.94),具有应用于食品及其他工业抗氧化剂的潜力。  相似文献   

2.
为充分利用油茶壳资源,研究分别采用醋酸法和碱法提取油茶壳木质素,并对其基本成分、理化性质和结构表征进行了分析。结果表明:提取的醋酸木质素(91.87%)纯度略微低于碱木质素(93.37%);且醋酸木质素中[C]和固定碳含量较高。两种木质素抗氧化力远大于油茶壳粗膳食纤维;与碱木质素相比,醋酸木质素持水力、溶胀力分别增加了59.49%、55.36%,饱和与不饱和脂肪结合力分别增加了5.06%、2.24%,DPPH自由基清除力增加了10.50%,吸湿率降低了28.14%。紫外和红外光谱谱图可知,醋酸木质素和碱木质素主要由愈创木基和紫丁香基组成;醋酸木质素中愈创木基含量更高,碱木质素中紫丁香基含量更高。热重分析可知,醋酸木质素热稳定性高于碱木质素,更适于高温耐热材料的制备。  相似文献   

3.
响应面优化黑葵花籽壳中黄酮的提取及抗氧化性研究   总被引:1,自引:0,他引:1  
利用响应面法对黑葵花籽壳中黄酮类化合物的提取条件进行了优化,得出了黑葵花籽壳黄酮类化合物的最佳工艺条件.结果表明:从黑葵花籽壳中提取黄酮类化合物的最佳乙醇浓度为70%vol,最佳提取温度为50℃,提取时间为2h,料液比为1∶23 (v/w).在此条件下提取率由5.6%提高到6.2%.对葵花籽壳黄酮的抗氧化研究表明:葵花籽壳黄酮的还原能力和超氧阴离子自由基(O·)的清除作用均明显高于2,6-二叔丁基对甲酚(BHT);在质量浓度小于8.0mg/L时,葵花籽壳黄酮对羟基自由基(·OH)的清除率高于BHT,而在质量浓度大于8.0m/L时低于BHT.  相似文献   

4.
研究了超声辅助提取葵花籽黄酮的最佳工艺。通过单因素实验选取超声功率、提取温度、液料比、提取时间为考察因素,利用响应面法Box-Behnken设计对提取葵花籽黄酮工艺参数进行优化,并用DPPH·法评价葵花籽黄酮体外抗氧化活性。结果表明:超声辅助提取葵花籽黄酮的最优工艺参数为超声功率120 W、提取温度64℃、液料比33∶1、提取时间28 min,在此条件下,葵花籽黄酮得率为1.91%;葵花籽黄酮对DPPH·清除率IC50为0.09 mg/m L,优于食品抗氧化剂BHT对DPPH·清除率(IC_(50)为0.11 mg/m L);与传统的索氏提取法对比,超声辅助法提取葵花籽黄酮时间短、节能和得率高。  相似文献   

5.
板栗壳色素兼具着色剂和抗氧化剂的双重作用,分别以70%乙醇和氨水(pH11)为溶剂提取板栗壳色素,对2种提取方法在色素的得率、紫外-可见光光谱以及抗氧化活性方面作了比较研究,以期为板栗壳色素的开发利用提供理论依据。醇提法所得色素色价较高,但在抗脂质过氧化、清除羟自由基和1,1-二苯基-2-苦基肼自由基活性以及还原力方面都不及碱提法所得色素,两种方法所得色素对超氧阴离子自由基的清除能力都很弱。  相似文献   

6.
以葵花籽壳为原料,提取水溶性膳食纤维,研究提取液浓度、料液比、浸提温度及浸提时间对提取率的影响,通过正交实验优化工艺条件,并对其体外抗氧化性进行研究。结果表明,提取最佳工艺条件为料液比1∶30、氢氧化钠的质量分数9.5%、浸提温度40℃、浸提时间30min,葵花籽壳水溶性膳食纤维提取率可达21.32%。葵花籽壳水溶性膳食纤维对1,1-二苯基-2-三硝基苯肼(DPPH)、超氧阴离子自由基(O2-·)和羟自由基(·OH)表现了良好的清除能力,其清除率在样品浓度为1.0mg/m L时分别为86.67%、70.32%和76.33%。  相似文献   

7.
测定了竹笋壳脂蜡质、水溶物、果胶质、半纤维素、纤维素以及Klason木质素的含量,应用响应面法研究了醋酸提取法提取毛竹笋壳中木质素的最佳工艺条件,并使用傅里叶变换红外光谱、核磁共振氢谱分析提取的木质素结构特征。以单因素实验考察料液比、提取时间、醋酸体积分数和浓盐酸添加量对木质素提取量的影响。在单因素实验的基础上,用Box-Benhnken设计对木质素提取工艺进行优化分析,建立了良好的数学模型。实验结果表明,脂蜡质、水溶物、果胶质、半纤维素、Klason木质素、纤维素的含量分别为12.9%、10.3%、6.9%、20.8%、17.8%、20.3%;醋酸法提取木质素的最优工艺为提取时间为99min,盐酸添加量为4%,料液比为1/19(g/mL),醋酸体积分数为91.6%,提取量为288.6mg,提取率达84.7%。  相似文献   

8.
为了获得兼具分子量低、分散度低和抗氧化活力高的木质素,本研究以油茶果壳为原料,采用碱法和低共熔溶剂法分离得到四种木质素,利用紫外光谱、凝胶渗透色谱、傅里叶变换红外光谱和热重分析对其进行结构分析,并通过清除1,1-二苯基-2-三硝基苯肼(DPPH)自由基能力评价其体外抗氧化活性。结果表明:紫外光谱和红外光谱显示油茶果壳木质素主要由紫丁香基和愈创木酚基单元结构组成。凝胶渗透色谱分析表明碱木质素的重均分子量(Mw)和分散度(PDI)分别为41858 g/mol和4.53,而低共熔溶剂提取的木质素具有较小的相对分子量(Mw<11000 g/mol)和分散度(PDI<2)。热重分析可知油茶果壳木质素热稳定性依次为:氯化胆碱-草酸(ChCl-OA)>碱木质素(AL)>氯化胆碱-乙二醇-对甲苯磺酸(ChCl-EG-P)>氯化胆碱-丙三醇(ChCl-GA)。此外,抗氧化活性结果显示4种木质素均有一定的抗氧化活性,清除DPPH自由基的IC50为0.388~1.02 mg/mL。此研究结果为油茶果壳木质素分离和高值化开发利用提供了一定的参考价值。  相似文献   

9.
小茴香中黄酮类化合物提取及抗氧化性研究   总被引:1,自引:0,他引:1  
通过正交实验得出小茴香黄酮类化合物的最佳提取条件:提取剂为95%乙醇(体积分数),料液比为1∶15(g/mL),提取温度为40℃。通过DPPH法研究不同温度、光照、金属离子对小茴香黄酮类化合物抗氧化活性的影响,结果表明:小茴香黄酮类化合物抗氧化活性对光和热有较好的稳定性。在一定浓度下,Zn~(2+)和Mg~(2+)可使小茴香黄酮类化合物的抗氧化活性提高,而Fe~(2+)和Cu~(2+)则使其抗氧化活性下降。与其他抗氧化剂比较,抗氧化活性为维生素Cβ-胡萝卜素小茴香黄酮类化合物。  相似文献   

10.
目的:确定天浆壳多酚的最佳提取工艺,并对其抗氧化活性进行初步研究。方法:以多酚提取量为指标,在单因素实验基础上,采用响应面法优化天浆壳多酚提取工艺。通过多酚的还原能力、羟自由基和1,1-二苯基-2-三硝基苯肼(DPPH·)自由基的清除作用来评价其抗氧化活性。结果:天浆壳多酚最佳提取工艺:乙醇浓度(v/v)为42%,液料比为16∶1(m L/g),提取温度为61℃,超声时间为64 min。在此条件下,天浆壳多酚的提取量为(26.86±0.37)mg/10 g。该多酚具有一定的还原能力,当多酚浓度为1 mg/m L时,对羟自由基和DPPH·自由基清除率分别为70.78%和85.22%。结论:此优化工艺可行,该多酚具有一定的抗氧化能力。  相似文献   

11.
王文华  郭丽  刘爽 《食品工业》2021,(1):146-150
以ABTS自由基清除能力为考察指标,研究不同反应温度和反应pH对蒲公英和葵花籽仁绿原酸抗氧化活性的影响,以抗氧化活性的IC50为复配依据,评价蒲公英和葵花籽仁绿原酸复合物的协同抗氧化作用。结果表明:反应体系pH 6、45℃条件下,蒲公英和葵花籽仁绿原酸对ABTS自由基清除率达到最高,分别为91.78%和90.51%。蒲公英和葵花籽仁绿原酸复配品可提高对ABTS自由基清除效率,具有协同抗氧化作用。  相似文献   

12.
为了提高麻疯树种子的开发利用价值,采用体外抗氧化实验对麻疯树籽仁/壳乙醇提取物抗氧化活性进行了研究。分别以麻疯树种子中的籽仁和籽壳为原料,经75%乙醇提取,在对提取物主要成分进行分析的基础上,以V为阳性对照,测定两种提取物对自由基(DPPH自由基、ABTS~+自由基、羟自由基和超氧自由基)的清除能力、还原能力以及抑制亚油酸自氧化能力。结果表明:麻疯树籽仁/壳乙醇提取物中多糖类物质总含量分别为47.67%和52.21%,酮类物质总含量分别为0.774%和4.22%,麻疯树籽壳乙醇提取物中还含有0.30%的多酚类物质;麻疯树籽仁/壳乙醇提取物均具有一定的抗氧化活性,其中籽壳乙醇提取物对DPPH自由基、ABTS~+自由基、羟自由基、超氧自由基的清除效果较好;麻疯树籽仁/壳乙醇提取物的还原能力和对亚油酸自氧化的抑制能力相对较弱。麻疯树籽壳乙醇提取物的抗氧化活性优于籽仁乙醇提取物,可能与籽壳乙醇提取物中含有较多的黄酮类和多酚类物质有关。  相似文献   

13.
This study aims to evaluate the antioxidant capacity of mango peel, roselle seed, okara (by‐product of soya milk industry), cocoa shell and pink guava (by‐product of pink guava industry) in comparison to 6‐hydroxy‐2,5,7,8‐tetramethylchroman‐2‐carboxylic acid (Trolox). The β‐carotene bleaching, 1,1‐diphenyl‐2‐picrylhydrazyl and reducing power assays were used to determine the antioxidant capacity of selected by‐products by measuring the absorbance at 470, 520 and 700 nm, respectively. The results showed that methanolic extracts of pink guava and cocoa shell exhibited the highest antioxidant activity and free radical scavenging activity compared to other studied samples. Roselle seed water extract exhibited the highest antioxidant activity and free radical scavenging when extracted with water. Pink guava possessed the highest reducing power in methanolic extract at a concentration of 0.16 mg mL?1. At the same concentration, mango peel exhibited the highest reducing power when extracted with water. The present study shows that pink guava, roselle seed and cocoa shell are potential sources of antioxidant components that can be exploited as food preservative agents or nutraceuticals. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
油茶籽壳粗提物的抗氧化活性研究   总被引:2,自引:0,他引:2  
采用不同浓度的乙醇溶液提取油茶籽壳中的有效成分,通过自由基体系、双氧水体系和亚硝酸盐体系研究油茶籽壳粗提物的抗氧化性能.结果表明,提取物的抗氧化活性与乙醇浓度有关,以60%乙醇提取物的抗氧化活性最强,当浓度为15、2、4、10 g/L时,粗提物对·OH、DPPH·、H2O2和亚硝酸盐的清除率最高分别为47.7%、76%、97.1%和99.0%,且粗提物用量与清除能力呈现明显的量效关系.  相似文献   

15.
研究七种常见水生蔬菜不同部位提取物的抗氧化活性以及对油脂抗氧化的效果。采用ABTS自由基清除法、DPPH自由基清除法检测菱角、芡实、莲藕、水芋头、茭白、荸荠和慈姑不同部位的醇提物、水提物的抗氧化活性,烘箱法测定对菜籽油过氧化值的影响。在30种提取物中DPPH自由基清除能力较强的三种提取物IC50值分别为:芡实壳醇提物(0.03 mg/mL)芡实壳水提物(0.04mg/m L)=菱角壳醇提物(0.04mg/m L);ABTS自由基清除能力较强的三种提取物Trolox含量分别为芡实壳醇提物(1.42g/g)芡实壳水提物(1.41 g/g)菱角壳醇提物(1.15 g/g);添加0.1%浓度的五种提取物第7 d的POV值分别为23.86 meq/kg、24.06 meq/kg、23.53meq/kg、24.43 meq/kg、22.40 meq/kg,五种提取物的油脂抗氧化效果均不如0.1%浓度的BHA。30种水生蔬菜提取物中,芡实壳和菱角壳的醇提物、水提物DPPH自由基清除能力最强,芡实壳醇提物、水提物ABTS自由基清除能力最强;芡实壳水提物、芡实壳醇提物、菱角壳水提物、菱角壳醇提物以及藕节醇提物对菜籽油有一定抗氧化的效果,但效果弱于相同剂量的BHA。  相似文献   

16.
Microwave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C9 formula, molecular weight distribution, FT-IR, 1H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin. In addition, an increase of the severity resulted in a decrease of the bound carbohydrate content as well as molecular weight of the lignin. Antioxidant activity investigation indicated that the radical scavenging index of the extracted lignins (0.35–1.15) was higher than that of BHT (0.29) but lower than that of BHA (3.85). The results suggested that microwave-assisted organic acid extraction provides a promising way to prepare lignin from bamboo with good antioxidant activity for potential application in the food industry.  相似文献   

17.
对拐枣子、拐枣和拐枣枝体积分数为80%的乙醇溶液浸提物抗氧化性进行比较,再选取拐枣为试验材料,经体积分数为80%的乙醇浸提浸膏分别用石油醚、乙酸乙酯、正丁醇、甲醇萃取,福林酚法测定不同极性部位多酚含量,通过测定DPPH自由基、ABTS自由基的清除率,研究拐枣萃取物的抗氧化作用。结果表明,拐枣对DPPH和ABTS自由基清除率分别为87.07%和95.67%,其抗氧化性高于拐枣子及拐枣枝;拐枣乙醇提取物浸膏不同极性萃取物中,乙酸乙酯萃取物的抗氧化能力最强,其多酚含量为202.8 mg/g,对DPPH和ABTS自由基清除作用的IC50分别为182 μg/mL和60 μg/mL,最大清除效率分别为94.0%和98.57%。试验表明拐枣具有较好的抗氧化能力,具有开发利用的价值。  相似文献   

18.
余甘子核仁油的体外抗氧化活性及其作用机理   总被引:2,自引:0,他引:2  
葛双双  张雯雯  李坤  徐涓  刘兰香  郑华  张弘 《食品科学》2017,38(15):127-134
本研究旨在研究余甘子核仁油的体外抗氧化作用,并探索多不饱串联和脂肪酸的抗氧化机理。以1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazl,DPPH)自由基与2,2’-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐自由基(2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphoate)radical,ABTS+·)为实验对象,通过余甘子核仁油对2种自由基的清除作用,评估其体外抗氧化能力。结果表明:余甘子核仁油对DPPH自由基清除作用的半抑制浓度(half maximal inhibitory concentration,IC50)为5.08 mg/m L,最大清除率为95.91%;对ABTS+·清除作用的IC50为9.84 mg/m L,最大清除率为98.58%。α-亚麻酸的清除自由基实验表明,余甘子核仁油中起抗氧化作用的主要物质为α-亚麻酸等多不饱和脂肪酸。通过抗氧化前后混合脂肪酸的紫外光谱扫描、红外光谱吸收,检测到了氧化后混合脂肪酸中共轭脂肪酸和羟基脂肪酸的生成,并在DPPH自由基过量条件下,利用气相色谱-质谱联用仪检测到了单羟基脂肪酸的存在,从而证明多不饱和脂肪酸清除自由基反应机理基至少包括多不饱和脂肪酸的共轭化、单分子加成、碳碳双键α-H氧化及环氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号