共查询到19条相似文献,搜索用时 93 毫秒
1.
以碱木质素为原料,按照其与NaOH质量比(简称碳碱比) 1∶1、1∶3、1∶5进行混合,利用实验室小型管式炉热裂解制备碱木质素基多孔炭材料,对多孔炭材料进行了场发射扫描电子显微镜、粒径、有机元素和傅里叶变换红外光谱分析;并采用自制碱木质素基多孔炭材料制备超级电容器,通过循环伏安测试和恒流充放电测试分析其电化学性能。结果表明,碱木质素基多孔炭材料形貌都呈球状或半球状,有大量孔结构,表面粗糙有起伏,碳碱比从1∶1变化到1∶5,平均粒径分布逐渐减小。碳碱比为1∶1时,碱木质素基多孔炭材料制备的超级电容器电化学性能最优,随着电流密度从0. 1 A/g增加到1 A/g,其比电容从71 F/g下降到62 F/g,下降13%左右;在1 A/g的超大电流密度下充放电循环500次,比电容依然维持在62 F/g,循环性能良好。 相似文献
2.
3.
4.
超级电容器,又叫做电化学电容器或者双电层电容器,是一种电化学电容器的总称。超级电容器和常规电容器和蓄电池之间有很大的区别。后者可以支持多达10000法拉/1.2伏,高达10000倍的电解电容器,但提供或接受不到一半的每单位时间的能量(功率密度)。相比之下,而超级电容器的能量密度是约10%的常规电池,其功率密度一般为10至100倍。这导致在更短的充电/放电周期比电池。此外,他们会容忍更多的充电和放电周期比电池。本文主要研究超级电容器结构原理及其在光伏领域的应用。 相似文献
5.
6.
为提高纤维状超级电容器的电容性能,将碳纳米管(CNT)纤维进行阳极氧化预处理、金属化处理和电沉积聚苯胺后得到不同的电极材料,分别将CNT、CNT/聚苯胺(CNT-PANI)、CNT/阳极氧化/聚苯胺(CNT-O-PANI)、CNT/阳极氧化/金属化/聚苯胺(CNT-O-Ni-PANI)这4种电极材料组装纤维状超级电容器,并对其结构和电化学性能进行研究。结果表明:经过阳极氧化和金属化处理后,聚苯胺均匀、紧密地分散在碳纳米管纤维表面,并且无团聚、结块等现象;CNT-O-Ni-PANI电极材料制备的超级电容器具有优异的储能性能,其比电容和能量密度远高于其他3种电极材料;在1 A/g的电流密度下,其比电容和能量密度分别为357.8 F/g和178.9 W·h/kg;在10 mV/s的扫速下,其比电容高达1 246.3 F/g;采用CNT-O-Ni-PANI所制备的超级电容器稳定性能较好,在5 A/g的电流密度下,经过10 000次恒流充放电循环后,其电容保持率仍高达99.7%。 相似文献
7.
传统超级电容器多使用液态电解质组装,然而其因过多外力而破损时,有毒且易挥发的液体电解质会发生泄露,进而引发安全隐患。为解决这一问题,需要开发柔性超级电容器,以抵抗外部力量的破坏。近年来,纤维素材料因绿色、经济和可再生的特点成为储能装置的理想材料,以纤维素基水凝胶组成的超级电容器表现出良好的物理、化学性能(如高柔韧性、优良的机械强度和导电能力)。纤维素基水凝胶在柔性超级电容器领域的应用已成为当前研究热点。本文综述了纤维素基水凝胶电解质的最新研究进展和成果,包括不同纤维素及其衍生物制备水凝胶电解质的性能与特点。最后,讨论了未来纤维素材料作为新能源材料的研究潜力和挑战。 相似文献
8.
严红艳 《皮革制作与环保科技》2021,2(7):41-42
纳米纤维素是一种来源广泛、制备方法多样、结构独特及化学和电化学稳定性优异的新型绿色可再生材料.本文概述了纳米纤维素的物理机械、化学水解和生物合成的三种制备方法,还介绍了纳米纤维素在超级电容器、锂硫电池和传感器等电化学领域的应用,最后对纳米纤维素的应用前景进行了展望. 相似文献
9.
10.
11.
12.
In this article, the application of cellulose and cellulose nanofibers in oil exploration was discussed, and the research status of using cellulose and cellulose nanofibers as oil displacement agents, oil-well cementing additives, and foam stabilizers were summarized. 相似文献
13.
细菌纤维素减肥功能测定及其酸奶的制作 总被引:1,自引:0,他引:1
目的:确定细菌纤维素酸奶制作工艺,验证细菌纤维素酸奶的减肥功效。方法:建立肥胖小鼠模型后,对小鼠按照500、417、333mg/kg(以体质量计)高、中、低的剂量进行细菌纤维素灌胃,每日1次,灌胃2周,检测小鼠血液中各项血脂指标;通过感官评价和质构分析确定制作细菌纤维素酸奶的关键工序参数。结果:细菌纤维素中、高剂量组和阳性药物组使营养性肥胖小鼠体质量下降极其显著(P<0.01),细菌纤维素各剂量组使小鼠血清中甘油三酯(TG)、总胆固醇(TC)和低密度脂蛋白胆固醇(LDL)水平下降显著(P<0.05),细菌纤维素各剂量组使高密度脂蛋白胆固醇(HDL-C)水平升高显著(P<0.05)。按牛奶质量的3%添加平均粒径为0.1cm的细菌纤维素颗粒,同时添加7%绵白糖,使酸奶的弹性、内聚性等品质显著改善。营养性肥胖模型小鼠的喂养实验证明各剂量组细菌纤维素酸奶减肥效果均显著。结论:细菌纤维素和细菌纤维素酸奶对营养性肥胖小鼠具有减肥作用,细菌纤维素对酸奶品质具有很好的改善作用。 相似文献
14.
Octadecylamine Graft-modified Cellulose Nanofiber and Its Reinforcement to Poly(butylene adipate-co-terephthalate) Composites 下载免费PDF全文
Biodegradable polymers such as poly(butylene adipate-co-terephthalate) (PBAT) have attracted great interest as alternatives to traditional petroleum-based polymers. Nonetheless, it is necessary to improve some properties of PBAT, such as mechanical strength. Cellulose nanofiber (CNF) can improve PBAT mechanical strength, but its dispersion and compatibility in the PBAT matrix require further improvement. In this study, octadecylamine (ODA) was utilized to graft-modify CNF to change the fiber-to-fiber interaction and improve its compatibility with the PBAT matrix. PBAT composites with 1 wt% CNF were prepared using a masterbatch premixing method to avoid CNF aggregation during extrusion. The effects of ODA graft modification on CNF properties were studied; varying degrees of CNF modification were investigated for their effect on PBAT properties. ODA-modified CNF (OCNF)/PBAT melt-extruded composites possessing 17.2% higher tensile strength than pure PBAT polymer were obtained without affecting the thermal stability of PBAT. As a result, surface modification of CNF with ODA is an effective strategy for improving CNF-PBAT compatibility. 相似文献
15.
16.
17.
18.
Surface Chemical Modification of Cellulose Nanocrystals and Its Application in Biomaterials 下载免费PDF全文
Cellulose nanocrystals (CNCs) have been widely applied in biomaterials and show great biocompatibility and mechanical strength. In this review, the chemical reactions applied in CNC surface modification and their application in CNC based biomaterials are introduced. Furthermore, the conjugation of different functional molecules and nanostructures to the surface of CNCs are discussed, with focus on the binding modes, reaction conditions, and reaction mechanisms. With this introduction, we hope to provide a clear view of the strategies for surface modification of CNCs and their application in biomaterials, thus providing an overall picture of promising CNC-based biomaterials and their production. 相似文献