首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
水力化增透技术是低渗煤层瓦斯强化抽采的重要手段,在分析水力割缝技术高压水喷射作用及水力压裂技术高压水压入作用特点的基础上,以增大钻孔卸压范围、联通孔周裂隙网络、提高瓦斯抽采效果为目的,提出顺层钻孔分段复合水力化增透技术,并在霍尔辛赫煤矿进行了现场试验。结果表明:在实施顺层钻孔分段复合水力化增透技术后,钻孔孔径提高3~4倍,卸压范围显著增大;单孔日抽采瓦斯纯量较对比钻孔提升幅度明显,抽采初期提高3~4倍;单孔抽采出现大幅度衰减迹象由10d提高到20d,抽采30d单孔累积抽量提高4~6倍;抽采30d单孔瓦斯抽采率提高3~5倍,增大了钻孔抽采有效控制范围。  相似文献   

2.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

3.
水力压裂增透技术在瓦斯抽采中的应用   总被引:13,自引:2,他引:11  
为了提高低透气性突出煤层的瓦斯抽采量,达到抽采消突的目的,在李子垭南二井进行了水力压裂增透技术现场试验,对水力压裂技术在高瓦斯、低透气性突出煤层中的运用效果进行了试验考察,并分析了水力压裂煤体致裂增透机理.试验结果表明:对煤层进行钻孔水力压裂后可有效提高煤层的透气性和钻孔瓦斯抽采效果,压裂前后钻孔瓦斯自然流量提高127.6倍以上,水力压裂钻孔在煤层走向方向上的影响半径可达50m以上.  相似文献   

4.
碎软低透突出煤层定向长钻孔整体水力压裂高效增透技术   总被引:1,自引:0,他引:1  
针对碎软低透突出煤层增透范围小、衰减速度快、抽采有效周期短等问题,以阳泉矿区15#煤层为研究对象,分析了长钻孔压裂增透机理,提出与煤层定向长钻孔相结合的煤矿井下长钻孔整体压裂增透技术。结合自主研发的整体压裂装备和工艺技术,实现了压裂钻孔的快速、稳定封孔,一次性压裂段孔长202 m的整体水力压裂施工,累计注水量2865m~3,最大泵注瞬时流量57.75 m~3/h,最大注水压力14.8 MPa。检测结果表明:压裂增透施工后,煤层透气性系数提高了4.88倍,最大影响半径达到了60m,流量衰减系数降低至压裂前的0.13倍,瓦斯含量降低至原始含量的0.55倍,实现了增透范围大、抽采时效长的瓦斯抽采效果,为碎软低透突出煤层强化增透和井下瓦斯高效抽采提供了技术保障。  相似文献   

5.
任仲久 《煤炭工程》2024,(2):131-137
针对低透气性高瓦斯煤层预抽瓦斯困难问题,提出导向槽定向水力压裂煤层增透技术,通过理论推导计算煤层段扩孔后塑性区分布,分析穿层钻孔煤层段水压裂缝的起裂与扩展,揭示导向槽定向水力压裂煤层增透的力学机制,研发导向槽定向水力压裂煤层增透装备。在山西中兴煤矿进行现场应用,结果表明:利用水射流方法对穿层钻孔煤层段进行扩孔,使得煤中产生形似圆柱孔洞,穿层钻孔围岩塑性区半径与钻孔半径成正比,钻孔扩孔是增大塑性区范围的一种有效方法,裂隙扩展明显,瓦斯采出率提高。同时研发了一种导向槽定向水力压裂防突成套装备,主要部件有移动高压水力泵站、喷头、喷嘴、螺旋辅助排渣水射流高压钻杆、孔口防喷装置以及高压旋转接头,结合井下水力化作业远程监测和控制,现场监测结果表明,通过增透作业钻孔的方法,平均瓦斯浓度和瓦斯抽采混合量提高到常规孔的2.75倍和1.81倍,说明采取导向槽定向水力压裂措施的增透效果显著。  相似文献   

6.
底板巷水力冲孔卸压增透技术的研究与应用   总被引:1,自引:0,他引:1  
为了考察底板巷水力冲孔卸压增透技术对增加煤层透气性,提高瓦斯抽采效果,在浦溪井1259(3)底板巷实施水力冲孔卸压增透技术试验.结果表明:水力冲孔卸压增透半径达到4~5m,为普通钻孔抽采影响半径的1.6~2.0倍;采取水力冲孔措施的半个月内,钻孔的平均瓦斯抽采浓度是普通钻孔的2.77倍,平均瓦斯流量是普通钻孔的3.43倍,卸压增透效果比较明显,提高了煤层透气性,降低了突出危险性.  相似文献   

7.
范迎春  王兆丰 《煤矿安全》2012,43(6):137-140
以罗卜安煤矿为研究背景,在预抽煤层瓦斯前,采用水力冲孔措施对煤层进行增透。为了分析水力冲孔对松软低透突出煤层的增透效果,特对水力冲孔前后钻孔瓦斯涌出特征、煤层透气性系数和钻孔抽放有效影响半径的差异性进行了对比研究,结果表明:水力冲孔后钻孔初始瓦斯涌出量提高了6倍,百米极限瓦斯流量提高了46倍,钻孔瓦斯涌出衰减系数降低了85%,煤层的透气性系数提高了53.48倍,钻孔抽放有效影响半径提高了2~3倍。  相似文献   

8.
王正帅 《煤炭工程》2021,53(2):85-89
为了解决新疆地区碎软突出煤层透气性差、瓦斯抽采难度大的问题,将多种水力化增透措施应用于碎软突出煤层瓦斯抽采中。通过在新疆艾维尔沟矿区4号煤层开展了高压水力割缝和水力压裂试验,并从抽采浓度、纯流量、衰减及工期等方面做了比较分析。研究表明:水力割缝和水力压裂后抽采浓度和抽采纯流量均呈现出先升高、后衰减、最后平稳的形态|单孔平均浓度与普通密集抽采孔相比分别提高了7.7和5.7倍,单孔平均纯流量分别提高了3.4和2.1倍|返排期后,抽采纯流量呈指数函数规律快速衰减,且前者明显比后者衰减快。采取水力化增透措施后,钻孔工程量大幅减少、总工期大幅缩短。  相似文献   

9.
瓦斯预抽增透一直是瓦斯治理工作的瓶颈,为了解决这一难题,提出水力压裂增透技术,分析了水力压裂增透技术的原理、水力压裂设备及钻孔布置工艺。在潘一煤矿32321底板巷开展了A组煤水力压裂增透试验,试验表明:压裂区域钻孔抽采半径为原始煤体的2倍;单孔瓦斯预抽纯量为原始煤体的3.5倍;煤层预抽达标时间缩短了51.6%;压裂有效影响半径倾向上达50 m,走向上达70 m,压裂后抽采半径走向上12 m,倾向上10 m,比原始抽采半径5 m增大1倍。  相似文献   

10.
为解决阳泉矿区低透气性松软煤层瓦斯抽放难、突出危险性大的问题,阳煤新景矿开展定向长钻孔水力压裂技术试验。结合水力压裂原理及增透目的对钻孔合理布孔进行了研究,逐步完善水力压裂装备和工艺,顺利完成现场注水压裂。通过卸压增透和抽采效果分析,透气性提高了2.67倍,压裂影响范围达到58m。瓦斯日抽采量达到2415m3,瓦斯含量下降了4.94m3/t。  相似文献   

11.
水力压裂技术是提高低透气性煤层瓦斯抽采效果的一种有效的增透措施。针对煤矿井下低透气性煤层瓦斯抽采浓度低、衰减系数大、抽采时间长且钻孔施工量大等问题,结合现场实际情况,确定压裂所需的仪器设备和工艺参数后,在工作面回风巷实施煤层压裂增透。根据压裂前后的瓦斯抽采参数跟踪记录,两者对比结果表明:对煤层进行压裂增透后,钻孔的最大瓦斯抽采流量和浓度最大可以提高3.65和4.42倍,煤层透气性显著提高,达到了强化瓦斯抽采的目的。  相似文献   

12.
潘雪松 《中州煤炭》2020,(7):27-30,33
为了解决矿井高应力和构造应力影响作用下煤层透气性差、钻孔塑性变形垮孔严重的问题,以松藻煤电公司逢春煤矿M7、M8煤层为试验对象,采用水力压裂和水力割缝相结合的方式,对煤层进行增透,以提高瓦斯抽采效率。介绍了穿层钻孔区域防突措施设计方案,开展了水力压裂钻孔、瓦斯抽采钻孔设计以及注水压力、注水量和保压时间等水力压裂工艺参数试验。通过比较水力压裂、水力割缝增透措施结合硬套管封孔技术及普通钻孔瓦斯抽采情况,表明水力压裂和水力割缝后钻孔瓦斯抽采浓度分别提高16%~36%和4%~16%,瓦斯抽采量(纯量)分别提高了6倍和3倍,可为同类地质条件瓦斯抽采提供参考。现场试验结果表明,复杂地质低渗煤层水力压裂—割缝综合瓦斯增透技术在煤层强化抽采中有较好的实际应用价值。  相似文献   

13.
针对余吾煤业S1206工作面煤层瓦斯含量大、煤层透气性系数低的特点,开展脉动水力压裂试验强化瓦斯抽采,研究了脉动水力压裂卸压增透机理,设计了脉动水力压裂的钻孔参数、封孔工艺和压裂参数。试验结果表明,与普通瓦斯抽采钻孔相比,压裂孔的瓦斯浓度平均提高4.7倍,纯流量平均提高了6.3倍;导向孔的瓦斯抽采浓度平均提高了3.7倍,抽采纯流量平均提高了3.9倍,实现了煤层的快速卸压增透,提高了瓦斯抽采效果。  相似文献   

14.
为了提升煤层瓦斯抽采效率,减少矿井瓦斯抽采工程量和抽采时间,讨论了水力冲压卸压增透机制,详细阐述了水力冲压卸压增透技术的工程实施模式,并将该技术应用于贵州新田煤矿煤巷条带瓦斯治理工作中,监测技术实施前后钻孔瓦斯抽采参数,数据分析结果表明:水力冲孔孔洞最大半径在0.23~0.72 m,水力压裂时的煤层破裂压力在13~26 MPa,冲孔后的平均瓦斯抽采体积分数提高了35%左右、瓦斯抽采纯量提高了1.1~5.0倍,冲压一体化作业后,钻场抽采浓度相较于冲孔后提高了0.8倍以上,钻场抽采纯量再次提高了3~5倍,卸压增透效果较为显著。工程试验结果证明水力冲压卸压增透技术能够实现煤层卸压增透,大幅提升煤层瓦斯抽采效率,对矿井安全高效生产有着重要的工程意义。  相似文献   

15.
为提高低透气性"三软"突出煤层的瓦斯抽采量,实现抽采消突的目的,在义安矿进行水力压裂增透技术现场试验,对水力压裂的应用效果进行了现场考察。结果表明:对煤层进行水力压裂后可有效提高钻孔瓦斯抽采效果和煤层的透气性,压裂后钻孔瓦斯抽放浓度及纯流量均提高5倍以上,水力压裂显著的泄压增透作用大大提高了钻孔施工进度,缓解了工作面接替紧张的局面。  相似文献   

16.
《煤》2015,(8)
采用底抽巷穿层钻孔水力冲孔卸压增透措施,可以有效增强煤层的透气性、扩大抽采半径和提高瓦斯抽采效果。基于水力冲孔卸压增透原理,对郑州矿区振兴二矿突出煤层实施底板穿层水力冲孔,考察水力冲孔前后瓦斯抽放浓度、煤层透气性和瓦斯流量衰减系数等的变化。试验结果表明:单孔平均瓦斯抽放浓度在水力冲孔后为11.02%,较未采取增透措施时的2.14%,提高了4倍;煤层透气性系数在采取措施后提高了39倍;瓦斯流量衰减系数则减小了近3倍。同时运用压力法测得该矿水力冲孔有效抽放半径为10 m。  相似文献   

17.
针对碎软低渗煤层成孔难、瓦斯抽采浓度及流量衰减速度快、抽采有效影响半径小、达标期长等问题。以千米定向长钻孔为基础,结合自主研发的分段水力压裂成套装备,提出了底板梳状长钻孔分段水力压裂强化增透技术并开展了碎软煤层典型矿区工程应用试验。研究结果表明:①实现了一次性裸眼分5段压裂增透施工,累计注水量达到2 865 m~3,最大注水压力达17.18MPa;②压裂增透后,煤层透气性系数增加至压裂前的16.63倍,钻孔瓦斯流量衰减系数降低至压裂前的7.6%,最大压裂影响半径达60m,与普通穿层压裂钻孔相比,采用底板梳状长钻孔分段水力压裂后钻孔抽采浓度提高了12.8倍,瓦斯日抽采纯量提高了2.53倍;③压裂增透过程可分为"高压注水通道打开—煤层起裂—周期性明显破裂"3个阶段。保压阶段孔内压力具有"快速下降—缓慢降低—平衡不变"的变化特征。④分析认为压裂增透过程可分为"高压注水通道打开—煤层起裂—周期性明显破裂"3个阶段变化。分段水力压裂增透过程中,通过高压注水作用下,周期性携带离散煤颗粒形成封堵带,压裂段循环增压,形成多点段三维立体裂隙网络。将压裂增透区域划分为紊流区、渗流区、过渡低渗及扩散区,通过卸压裂隙带的渗流及扩散和高压水的甲烷置换作用,加速瓦斯解吸和增大瓦斯裂隙运移通道,实现碎软煤层瓦斯增透高效抽采。  相似文献   

18.
针对鲁班山北矿8号煤层地质构造复杂、透气性差、抽采效果差的问题,在152底板巷道对8号煤层进行水力压裂和深孔预裂爆破联合增透技术,结果表明该技术比水力压裂技术、深孔预裂爆破增透技术和普通抽采技术提高了煤层透气性,瓦斯抽采纯量较水力压裂钻孔提高了1.55倍、是深孔预裂爆破钻孔1.39倍、是普通抽采钻孔2.3倍,水力压裂和深孔预裂联合增透试验钻孔汇总浓度保持在42%以上且无衰减。  相似文献   

19.
赵伟伟 《煤》2020,29(6)
针对低渗高瓦斯松软煤层面临的瓦斯抽采率低的难题,提出运用顺层钻孔水力导向压裂增透技术改造煤层原始瓦斯赋存状态以提高瓦斯抽采率。理论分析了煤层水力压裂增透机理,并推导得出了距离水力压裂钻孔R处的煤体渗透率方程,分析发现压裂钻孔周围煤体渗透变化规律以及渗透率与压裂时间的关系。数值模拟研究得出常规顺层钻孔水力压裂增透半径为3 m,而运用水力割缝后进行导向水力压裂增透半径达到了6 m。现场试验表明,运用水力导向压裂增透技术能够有效提高低渗高瓦斯松软煤层的渗透性,从而提高本煤层瓦斯抽采效果。  相似文献   

20.
为了提高低透气性煤层瓦斯渗透率和瓦斯抽采效果,利用模拟软件计算了煤层水力压裂孔径和地应力对压裂效果的影响,并进行了工程试验。模拟结果表明,大压裂孔孔径对压裂效果起到促进作用,高地应力对压裂效果起到抑制作用;现场试验结果表明,在煤层中实施水力压裂增透技术后,钻孔瓦斯涌出量衰减度降低了67.65%,煤层透气性提高了30多倍,表明在低透气性煤层中实施水力压裂增透技术能大幅度提高煤层瓦斯抽采效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号