首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
高效液相色谱法测定农田人参中9种人参皂苷单体含量   总被引:2,自引:0,他引:2  
为评价农田人参质量,建立同时测定农田人参中9种人参皂苷单体含量的方法。采用反相高效液相色谱法(reversed phase-high performance liquid chromatography,RP-HPLC)对农田人参与伐林人参中9种人参皂苷单体含量进行比较分析,色谱条件:色谱柱(4.6mm×150mm,5μm),乙腈(A)-水(B)为流动相,梯度洗脱[0min(18%A)→24min(22%A)→26min(26%A)→30min(32%A)→50min(33.5%A)→55min(38%A)],流速为1.0mL/min,检测波长203 nm,柱温35℃。结果表明:农田人参含有与伐林人参相同种类的9种人参皂苷Rg 1、Re、Rf、Rg2、Rb1、Rc、Rb2、Rb3、Rd;6年生农田人参9种皂苷含量均高于6年生伐林人参,但除Rg1含量差异显著外(P<0.05),其他8种皂苷含量均不显著(P>0.05);4年生农田人参除Rg1、Rf显著高于4年生伐林人参(P<0.05)外,其他7种皂苷含量与4年生伐林人参差异均不显著(P>0.05)。农田人参中Rgl、Rb1的含量、Rgl和Re含量之和、Rgl和Re含量之和均超过中国药典、欧洲药典与美国药典的要求。  相似文献   

2.
为了更加有效评价人参制剂生产质量,建立了一种同时测定人参制剂中20 种人参皂苷的高效液相色谱方法。结果表明,20 种人参皂苷Rg1、Re、Rg2、Rg3、Rg5、Rf、F1、F2、Rc、Rd、Rb1、Rb2、Rb3、Rh2、compound K、20(R)-Rh1、Rk3、Rh4、原人参二醇及原人参三醇均得到良好分离,线性关系良好(R≥0.999 2)。该方法快捷简便、稳定可靠,能够精确全面检测分析人参皂苷含量,对于人参加工品及其制剂的质量控制更为全面准确可行。  相似文献   

3.
该研究旨在建立超高效液相色谱(UPLC)-一测多评(QAMS)法同时测定参鹿酒中7种人参皂苷(Rg1、Re、Rf、Rb1、Rc、Rb2及Rd)的含量。首先采用UPLC测定参鹿酒中7种人参皂苷含量,并进行方法学考察。然后以人参皂苷Rg1为参照物,计算其余6种人参皂苷的相对校正因子及含量,并考察QAMS法的耐用性。最后与外标法相比,验证QAMS的可行性。结果表明,7种人参皂苷在各自范围内线性关系良好(R2>0.999),精密度、重复性及稳定性试验结果的相对标准偏差(RSD)均<3%,加样回收率为100.13%~101.73%。6种人参皂苷的相对校正因子的RSD值均<5%,重现性良好。采用相对校正因子计算得到的13批参鹿酒样品中7种人参皂苷的含量与外标法实测值的相对误差(RE)均<5%,说明所建立的UPLC-QAMS法可有效、快速的评价参鹿酒的质量。  相似文献   

4.
不同种类人参及其各部位中皂苷组成和比例的研究   总被引:9,自引:0,他引:9  
研究了不同种类人参中皂苷含量 ,以及人参不同部位中的皂苷成分及比例。总皂苷含量测定结果为 ,三七参根中含 14 .2 % ,西洋参须中含 10 .1% ,人参根中含 4.4% ,人参头中含 8.6% ,人参皮中含 6.7% ,人参叶中含 7.7% ,人参须中含 9.9%。对西洋参须、三七参根及吉林产的人参头、人参皮、人参叶、人参根、人参须中的总皂苷作TLC检测及薄层扫描表明 ,三七参根中Rg1含量最高 ,西洋参须中Rb1含量最高 ,人参根中Rd的含量可以忽略 ,人参叶中含有特征皂苷F2 ;它们的Rb1/Rg1值分别为 ,西洋参须中 2 2 .2 ,三七参根中 0 .6,人参头中 4.3 ,人参皮中 6.7,人参叶中 0 .2 ,人参根中 2 .4,人参须中 11.9。  相似文献   

5.
超高效液相色谱法检测6种人参皂苷含量   总被引:1,自引:0,他引:1  
采用超声提取药食同源植物(人参、西洋参、三七)中原人参三醇皂苷(Rg1、Re、Rf)和原人参二醇皂苷(Rb1、Rc、Rd),建立了超高效液相色谱(UPLC)检测方法。以50%甲醇溶液为提取剂,料液比1∶80(g∶m L),超声时间30 min。采用乙腈和0.05%磷酸水为流动相,梯度洗脱,检测波长为203 nm。该方法在质量浓度5~1 000μg/m L范围内线性良好,6种皂苷的最低检出限在22.5~51.0 mg/kg之间,平均回收率98.1%~105.5%。该方法准确、灵敏度高、重现性好、省时快捷,适合日常、大批量样品的检测。用此方法测定市售人参、西洋参及三七样品,结果表明3类样品中原人参二醇类皂苷含量高于三醇类皂苷,三七样品中Rg1的含量比人参和西洋参高,西洋参中Re含量高于人参和三七样品,而Rf仅在人参样品中检测到。  相似文献   

6.
摘 要: 目的 以人参为原料, 通过保加利亚乳杆菌发酵提高人参皂苷含量。方法 利用单因素试验和响应面法优化发酵工艺, 并对发酵过程中原型人参皂苷生物转化可能途径进行分析。结果 在发酵培养基为MRS液体培养基的前提下, 最适发酵条件为发酵温度40℃, 发酵时间3 d, 接种量3%, 转化稀有人参皂苷含量在150 μg/mL。经对比发现, 原参中检测出Re、Rg1、Rb1、Rc、Rb2、Rd、Rh1 7种皂苷, 经过发酵后的人参中检测出Re、Rg1、Rb1、Rc、Rb2、Rh1、Rd、R-rg3、CK 9种皂苷。同时原参中的常规皂苷含量经发酵后有所下降, 稀有皂苷含量有所增加, 且多酚、黄酮含量增加, 总糖含量减少, 发酵过程中人参皂苷生物转化的可能途径与人参皂苷含量变化趋势一致。结论 保加利亚乳杆菌发酵人参能够有效将原型皂苷转化成稀有人参皂苷, 为人参的深加工奠定基础, 为人参发酵产品的开发和利用提供参考。  相似文献   

7.
目的:建立UPLC法同时测定竹节参中7种皂苷含量,并结合化学计量学分析评价其质量。方法:采用ACQUITYUPLCBEHC18色谱柱(2.1mm×100mm,1.7μm),流动相为水(A)—乙腈(B),梯度淋洗;流速0.4mL/min,温度30℃,进样体积1μL,检测波长203nm。应用化学计量学中聚类分析、主成分分析及质量波动分析对含量测定结果进行识别,以分析不同产地竹节参药材间相似性及差异性。结果:7种皂苷(人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、竹节参皂苷Ⅴ、竹节参皂苷Ⅳ、竹节参皂苷Ⅳa与假人参皂苷RT1)在核定范围内线性关系良好(R2≥0.9994);平均加样回收率在99.00%~104.37%;人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、竹节参皂苷Ⅴ、竹节参皂苷Ⅳ、竹节参皂苷Ⅳa与假人参皂苷RT1的含量范围分别为0.21~18.85,0.59~2.82,1.25~8.12,59.14~97.16,22.21~47.19,15.97~32.66,0.07~34.09mg/g。通过聚类分析和主成分分析可将9批竹节参样品分为3类,竹节参样品S6为Ⅰ类,S3、S7和S8为Ⅱ类,S1、S2、S4、S5和S9为Ⅲ类;通过质量波动分析发现人参皂苷Rg1与假人参皂苷RT1含量波动大。结论:竹节参中7种皂苷成分含量同时测定的UPLC法及化学计量学综合评价可用于竹节参的质量评价。  相似文献   

8.
以酿酒酵母作为模式生物对人参皂苷进行抗衰老活性筛选并对其活性展开初步探讨。基于模式菌酿酒酵母(Saccharomyces cerevisiae BY4742)的生长曲线筛选出人参皂苷的最适给药浓度,在此基础上,根据酵母的生长曲线和超氧化物歧化酶SOD活性筛选八种人参皂苷单体Rb1、Rb2、Rg1、Rg2、Rg3、Rh1、Rh2、Rd的抗衰老作用,找出效果最佳的一种单体皂苷,再通过抗氧化指标检测及细胞形态变化分析,初步探究人参皂苷的抗衰老作用。同时提取酿酒酵母蛋白进行蛋白组学分析,确定具有显著差异的蛋白,结合GO富集分析相关生物学分析,对差异蛋白的功能通路、属性和代谢通路等进行分析研究。结果表明,人参皂苷的最适给药浓度是180 μg/mL,常用的八种单体皂苷中人参皂苷Rg1具有明显的抗衰老作用,能延缓酵母进入衰亡期。人参皂苷Rg1可以不同程度提高酵母细胞内的抗氧化酶:超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性,减少活性氧(ROS)含量和丙二醛(MDA)含量。蛋白组学分析结果显示人参皂苷延缓酿酒酵母衰老可能与14个显著差异蛋白有关,同时与细胞代谢有密切关系。  相似文献   

9.
建立一种简单、有效、精密和准确的超高效液相色谱方法评价不同人参加工产品的质量,同时快速测定20 种人参皂苷Rg1、Re、Rf、20(S)-Rg2、20(R)-Rg2、Rb1、Rc、Ra1、Rb2、Rb3、Rd、Rk3、F2、20(S)-Rg3、20(R)-Rg3、Compound K(CK)、Rg5、20(S)-Rh2、20(R)-Rh2和protopanaxadiol(PPD)。采用二极管阵列检测器和ACQUITY UPLC BEH-C18(2.1 mm×50 mm,1.7 μm)色谱柱,以乙腈-水为流动相,流速0.3 mL/min,柱温30 ℃,梯度洗脱。20 种人参皂苷在31 min内可达到良好的分离,考察方法的线性范围、回收率、日内和日间精密度。在本方法条件下,线性关系良好,相关系数R2均大于0.998,日内相对标准偏差不大于4.65%,日间相对标准偏差不大于4.88%,回收率为85.71%~108.50%。方法检出限为0.81~3.10 μg/mL,方法定量限为2.88~10.00 μg/mL。本方法快速、可靠,已成功用于不同人参加工产品包括保鲜参、红参和白参中20 种人参皂苷的分析检测,有效揭示不同人参加工产品中人参皂苷含量水平的显著变化,可用于鲜人参及其加工产品中活性化合物的分析和质量控制。  相似文献   

10.
建立一种简单、有效、精密和准确的超高效液相色谱方法评价不同人参加工产品的质量,同时快速测定20种人参皂苷Rg1、Re、Rf、20(S)-Rg2、20(R)-Rg2、Rb1、Rc、Ra1、Rb2、Rb3、Rd、Rk3、F2、20(S)-Rg3、20(R)-Rg3、Compound K(CK)、Rg5、20(S)-Rh2、20(R)-Rh2和protopanaxadiol(PPD)。采用二极管阵列检测器和ACQUITY UPLC BEH-C18(2.1 mm×50 mm,1.7μm)色谱柱,以乙腈-水为流动相,流速0.3 mL/min,柱温30℃,梯度洗脱。20种人参皂苷在31 min内可达到良好的分离,考察方法的线性范围、回收率、日内和日间精密度。在本方法条件下,线性关系良好,相关系数R2均大于0.998,日内相对标准偏差不大于4.65%,日间相对标准偏差不大于4.88%,回收率为85.71%~108.50%。方法检出限为0.81~3.10μg/m L,方法定量限为2.88~10.00μg/m L。本方法快速、可靠,已成功用于不同人参加工产品包括保鲜参、红参和白参中20种人参皂苷的分析检测,有效揭示不同人参加工产品中人参皂苷含量水平的显著变化,可用于鲜人参及其加工产品中活性化合物的分析和质量控制。  相似文献   

11.
This study was carried out to investigate the changes of ginsenoside compositions and antioxidant activity of fresh ginseng induced by thermal processing at different temperatures (25, 100, 121, and 150°C), pressure (0.1, 10, 20, and 30 MPa), and soaking solvents (water and ethanol). The levels of ginsenosides were similar trend with the pressure of 0.1–30 MPa, while there were significantly differences in heated ginseng with heating temperature and soaking solvent. When water and ethanol was used, the ginsenoside compositions significantly changed at 100 and 121°C, respectively, and it was rapidly decreased at 150°C. After heating, the level of 3 ginsenosides (Re, Rf, and Rg1) decreased and that of 5 other ginsenosides [Rb1, Rb2, Rb3, Rc, and Rg2(S)] increased up to 121°C compare to raw ginseng. Ginsenoside F2, F4, Rg2(R), Rk3, Rh4, Rg3(S), Rg3(R), Rk1, and Rg5, which was absent in raw ginseng, was detected in heated ginseng. Especially, ginsenoside Rg3(S), Rg3(R), Rk1, and Rg5 were remarkably produced after thermal processing. After heating, the phenolic compounds (1.43–11.62 mg/g), 50% inhibition concentration (IC50) value (1.48–3.11 mg/g), and ABTS radical scavenging activity (0.66–9.09 mg AA eq/g) of heated ginseng were increased.  相似文献   

12.
Korean ginseng (Panax ginseng C.A. Meyer) contains several types of saponins and ginsenosides, which are usually considered the major active components of ginseng. The types and quantities of saponins found in ginseng may differ depending on the region of cultivation. As a result, ginsengs produced in different areas of Korea have been unintentionally mislabeled and/or confused by Korean herbal markets owing to their complicated plant sources. Another concern is that 4- and 6-year-old ginseng roots, traditionally prescribed for different medicinal purposes, can vary in total saponin contents. Therefore, it is necessary to establish a reliable method for distinguishing different cultivation regions and ages of ginseng roots. A rapid resolution liquid chromatography-quadruple time of flight mass spectrometry (RRLC-QTOF/MS) based chemical profiling method was established for the rapid and global evaluation of Korean ginseng roots in this study. The method was successfully applied for the comparison of ginseng roots cultivated in different regions and of differing ages. Principal component analysis (PCA) of the data showed the clear separation of 4- and 6-year-old ginseng roots and of ginseng cultivated in 2 different areas of Korea, Ganghwa and Punggi.  相似文献   

13.
不同年生和不同部位人参样品有效成分的比较   总被引:1,自引:0,他引:1  
陈丽雪  曲迪  华梅  高坤  孙印石 《食品科学》2019,40(8):124-129
比较不同年生和不同部位人参中单体皂苷、总皂苷、总多糖、氨基酸、蛋白质的含量差异,旨在为全面评价及综合利用人参提供参考依据。采用超高效液相色谱法、香草醛-硫酸显色法、苯酚-硫酸显色法、阳离子交换色谱法、杜马斯燃烧法分别对不同年生及不同部位的人参中单体皂苷、总皂苷、总多糖、17 种氨基酸、粗蛋白的含量进行测定,比较其差异。不同年生(3~6 a)样品中单体皂苷、总皂苷、氨基酸、粗蛋白含量为6 a生人参最高,分别为30.94、59.77、96.53、170.11 mg/g;总多糖含量为5 a生最高,为22.80 mg/g。5 a生根的不同入药部位(芦头/主根/侧根/须根)样品中总多糖、氨基酸、粗蛋白含量为芦头最高,分别为25.94、121.76、193.36 mg/g;单体皂苷和总皂苷含量为须根最高,分别为75.01、67.94 mg/g。5 a生不同生物学部位(根/茎/叶/花)人参样品中总多糖含量为叶最高,为35.09 mg/g;单体皂苷、总皂苷、氨基酸、粗蛋白含量为花最高,分别为105.99、113.78、137.53、255.05 mg/g。人参皂苷生物活性研究表明,不同年生皂苷含量为6 a生人参最高,5 a生不同部位中皂苷含量为人参花中最高,从营养成分更全面的角度分析,亦是6 a生人参和5 a生人参花中营养成分含量更高。  相似文献   

14.
Air drying (AD), freeze-drying (FD), and vacuum-microwave drying (VMD) were applied to fresh North American ginseng roots to evaluate the effect of different drying techniques on pore characteristics and the subsequent recovery of ginsenoside content. FD ginseng root produced the lowest reductions in both total moisture content and water activity (P < 0.05), with no differences noted between Ontario or British Columbia ginseng. Ginseng roots from Ontario and British Columbia sources were therefore pooled to conduct the root porosity and ginsenoside measurements. Among samples, FD ginseng obtained the highest total porosity followed by VMD and AD, respectively (P < 0.05). All dehydrated samples had a porous structure with sizes that ranged from 0.002 μm to 172 μm, dominated by macropores (>1.5 μm). Pore characteristics of dried ginseng root were shown to affect recovery of ginsenosides, with the general trend being an increase in total porosity resulting in an increase in total ginsenoside recovered. High performance liquid chromatography results obtained on specific ginsenosides showed that AD of ginseng root resulted in the lowest recovery of total ginsenosides, most notably, Rg1 and Rb1, followed by VMD and FD, respectively. There was no specific difference in total ginsenoside recovery from roots dried at increasing power of VMD.  相似文献   

15.
The effects of puffing process on chemical conversion of ginsenosides, extraction yields and crude saponin contents in red ginseng were investigated. To reach a maximum extraction yield, puffed red ginseng took only 8 h, while non-puffed red ginseng required at least 20 h showing extraction yields of 45.7 g solid extract/100 g sample and 44.5 g solid extract/100 g sample, respectively. Extraction yield increased slightly with increasing puffing pressure. Puffed red ginseng showed higher crude saponin contents (201.0-219.0 mg/g extract) than non-puffed one (161.7-189.0 mg/g extract). As the puffing pressure increased, minor ginsenosides (Rg3, F2, Rk1 and Rg5) increased but the contents of major ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) decreased. These results indicated that a puffing process may provide an effective method to reduce the extraction time, improve the extraction yield and increase the crude saponin content of red ginseng.  相似文献   

16.
董妍  郜玉钢  赵岩  何忠梅  臧埔  张连学 《食品科学》2016,37(12):110-116
目的:考察单糖、双糖、多糖水煎煮对人参化学成分的影响。方法:采用高效液相色谱法、苯酚-硫酸法及福林酚法分别测定糖水煎煮人参、单煮人参及人参生药中人参皂苷、水溶性糖和总酚等有效成分含量。结果:糖水煎煮后人参中稀有人参皂苷F1、F2、Rg3、化合物K含量及16 种皂苷单体加和值均显著增加;糖水煎煮人参中水溶性糖和总酚含量均显著高于人参生药组,且水溶性糖含量高于单煮人参组(除木糖醇组),葡萄糖、麦芽糖、蔗糖、红糖、阿斯巴甜和硫酸软骨素组总酚含量显著高于单煮人参组(P<0.05)。结论:糖水煎煮可提高人参中稀有皂苷、水溶性糖和总酚含量。  相似文献   

17.
Major ginsenosides in ginseng (Panax ginseng) and its products are highly glycosylated, hence poorly absorbed in the gastrointestinal tract. β-Glycosidase-assisted deglycosylation of pure ginsenosides was peformed to study bioconversion mechanisms. Ginsenoside standard compounds, crude saponin, and red ginseng extracts were incubated with β-glycosidase (0.05% w/v, 55°C). β-Glycosidase has a broad specificity for β-glycosidic bonds, hydrolyzing the β-(1→6), α-(1→6), and α-(1→2) glycosidic linkages. The final metabolite of protopanaxadiol ginsenosides was Rg3 while the metabolite of protopanaxatriol ginsenosides was Rh1. β-Glycosidase treatment of red ginseng extracts resulted in a decrease in the amounts of Rb1, Rc, Re, and Rg2 after 24 h, whereas levels of the less glycosylated Rd, Rb1, Rg, Rg3, Rg1, and Rh1 forms increased. When crude saponin was incubated with β-glycosidase for 24 h, levels of Rb1, Rc, Re, and Rg1 decreased while levels of Rd, Rg3, and Rh1 increased as deglycosylated ginsenosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号