共查询到20条相似文献,搜索用时 78 毫秒
1.
根据文本分类的特点,在对最小二乘支持向量机方法进行详细分析的基础上,创建了基于最小二乘支持向量机的多元文本分类器.实验表明,采用该文本分类器能够在保持较高分类精度和召回率的基础上,提高训练效率,具有一定的可行性. 相似文献
2.
对常规评估方法和支持向量机模型用于武器系统研制项目评估进行了分析和比较。着重分析了应用支持向量机进行武器系统研制项目重要度评估的具体形式以及方法特点,通过实例进行了分析验证,取得了满意的结果. 相似文献
3.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题。从理论与实验上比较了目前常用的基于支持向量机的变压器故障诊断方法。 相似文献
4.
本文提出了一种基于支持向量机的坦克识别算法。在对图像预处理之后,运用颜色和纹理信息进行分割,采用基于数学形态学的算法求得边缘像素,提取具有RST不变性的轮廓特征向量,输入支持向量机进行训练和识别。将支持向量机与传统的人工神经网络的算法进行了对比实验,实验表明基于支持向量机的坦克识别算法具有更好的性能。 相似文献
5.
基于双隶属模糊支持向量机的中小企业信用评价 总被引:1,自引:0,他引:1
构建了中小企业信用评价的双隶属模糊支持向量机模型(DFSVM),使每个训练样本依双隶属度同时隶属于两个信用类别,并通过粗糙集的属性约简方法确定支持向量机的最优输入指标组合。考虑到银行对于信用风险的厌恶,在模型的训练阶段对样本进行了"非对称"处理。实证结果表明,与传统的判别分析方法相比,建立的企业信用判别模型精度更高,调整后的模型可以进一步降低银行的信用风险。 相似文献
6.
统计学习理论(Statistical Learning Theory,SLT)是一种专门研究小样本情况下机器学习规律的理论,作为统计学习理论的VC维理论和结构风险最小化(Structure Risk Minimization,SRM)原则的具体实现算法支持向量机(support vector machinse,SVM),集优化、核(Kernel)、最佳推广能力等特点于一身,其出色的学习能力被广泛的关注并在各个领域广泛应用,系统介绍基于支持向量机的网络安全风险评估,给出其可行性、优越性及SVM评估模型,最后提出该研究发展方向与前景的预见。 相似文献
7.
8.
9.
针对小样本步态数据引起的分类器泛化能力差的问题,提出了基于支持向量机的步态分类方法.采集了24名青年和24名老年受试者的步态数据,提取24个步态特征训练支持向量机,采用交叉验证方法评估分类器的泛化性能.结果表明,本文提出的方法能够有效地对小样本步态数据分类,并且具有良好的泛化性.不同的核函数对分类性能影响较小.与传统反向传播学习算法的神经网络分类器进行了比较,支持向量机分类性能明显优于传统反向传播学习算法的神经网络.支持向量机在步态分类中具有广泛的应用前景. 相似文献
10.
11.
LILing-jun ZHANGZhou-suo HEZheng-jia 《国际设备工程与管理》2003,8(3):179-183
The Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory ( SLT), which can get good classification effects even with a few learning samples.SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents a SVM-based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearings is conducted. The vibration signals acquired from the bearings are used directly in the calculating without the preprocessing of extracting its features. Compared with the methods based on Artificial Neural Network (ANN), the SVM-based method has desirable advantages. It is applicable for on-line diagnosis of mechanical systems. 相似文献
12.
13.
针对目前多品种、复杂化的生产趋势,提出了一种基于自适应变异的粒子群算法(AMPSO)和支持向量机(SVM)的控制图失效模式识别的方法。利用SVM小样本学习能力,设计一对一的SVM多分类器进行控制图模式识别,并利用AMPSO算法优化SVM核函数的参数。通过对10种控制图模式(6种基本模式和4种混合模式)的20维特征仿真数据对该方法进行检验,并通过与BP、SVM、PSO SVM识别方法的对比分析。仿真试验表明该方法有效提高了控制图模式的识别精度,达到9814%,而BP仅有75%,为控制图在线实时识别提供了一种可行的途径。
相似文献
14.
为提高三维物体识别系统性能并减少计算复杂性,本文提出了一种基于视图的方法.首先从三维物体的二维视图中提取颜色矩、纹理特征和仿射不变矩.颜色矩对于物体的大小和姿态不敏感且性能稳健.纹理特征可区别形状相似但外观不同的物体.仿射不变矩在物体发生仿射形变下具有不变性.本文将上述各种特征组合为23个分量的特征向量,送入支持向量机进行训练并识别.基于两种公开的三维物体数据库COIL-100和ALOI测试了本文方法性能.当每物体训练视角为36个(视角间隔10°)时,在两个数据库上的实验都达到了100%的识别率.进一步减少训练视角数量也达到较满意的识别性能,优于文献中的方法. 相似文献
15.
支持向量机及其在机械故障诊断中的应用 总被引:4,自引:6,他引:4
支持向量机(SVM)是一种基于统计学习理论的新型机器学习方法,对小样本决策具有较好的学习推广性。对近年来支持向量机的研究进展及其在故障诊断中的应用做了简要介绍,讨论了支持向量机的特点和存在的问题,展望了其在机械故障诊断的研究前景。 相似文献
16.
行人再识别中的难点在于在不同摄像机中同一行人的图像差异较大,单一特征难以稳定地描述图像,而采用多种特征融合时无法准确分配权重。针对这一缺陷,本文提出了多核支持向量机多示例学习的行人再识别算法。首先提取行人在A、B摄像机下二张图片的分块HSV颜色特征和分块SIFT局部特征并构建词袋,将二者作为示例样本封装成包;其次对多核支持向量机模型进行了优化,采用高斯核和多项式核线性融合对包进行训练,并用多示例学习获得最优权重;最后本文算法在VIPe R标准数据集上进行了测试,识别准确率通过计算十次实验的平均准确度来获得,并用CMC曲线进行表示,同时也对样本的匹配结果进行排序。实验结果表明本文算法与多个优秀的算法相比,鲁棒性和识别准确度都获得了提高。 相似文献
17.
This paper investigates performance improvement via the incorporation of the support vector machine (SVM) into the vector tracking loop (VTL) for the Global Positioning System (GPS) in limited satellite visibility. Unlike the traditional scalar tracking loop (STL), the tracking and navigation modules in the VTL are not independent anymore since the user’s position can be determined by using the information from other satellites and can be predicted on the basis of the states of the user. The method proposed in this paper makes use of the SVM to bridge the GPS signal and prevent the error growth due to signal outage. Similar to the neural network, the SVM is motivated by its ability to approximate an unknown nonlinear input-output mapping through supervised training. The SVM is employed for predicting adequate numerical control oscillator (NCO) inputs, i.e., providing better prediction of residuals for the Doppler frequency and code phase in order to maintain regular operation of the navigation system. When the navigation processing is in good condition, the SVM is at the training stage, and the output information from the discriminator and navigation filter is adopted as the inputs. Other machine learning (ML) algorithms such as the radial basis function neural network (RBFNN) and the Adaptive Network-Based Fuzzy Inference System (ANFIS) are employed for comparison. Performance evaluation for the SVM assisted architecture as compared to the RBFNN- and ANFIS-assisted methods and the un-assisted VTL will be carried out and the performance evaluation during GPS signal outage will be presented. The proposed design is very useful for navigation during the environment of limited satellite visibility to effectively overcome the problem in the environment of GPS outage. 相似文献
18.
19.
为预测60种烯烃类单体(M1)与苯乙烯(M2)的自由基共聚合竞聚率lgr1S值,采用密度泛函理论(DFT)B3LYP方法在6-31G(d)基组水平上对烯烃类单体(C1H2=C2XY)进行了计算。用于构建支持向量机(SVM)模型的最佳参数子集包括:原子R3的Mulliken电荷qMR3,C1的Mulliken电荷QMC-1(H原子电荷全部合并到与之相连的重原子上),参数QMC-1与qMC-2之比RQq(=QMC-1/qMC-2),最低未占分子轨道(LUMO)能级(ELUMO)和最高占据分子轨道(HOMO)能级(EHOMO)之差ΔEg。最佳SVM模型为高斯径向基核函数(C=1000,ε=0.0001及γ=0.2)。该模型训练集、验证集及测试集的均方根(rms)误差分别为0.043,0.157及0.192,与现有竞聚率lgr模型相比,本文所得SVM模型具有更好的统计品质。 相似文献
20.
Jiaqi Zhen 《计算机、材料和连续体(英文)》2020,63(1):445-458
In array signal processing, number of signals is often a premise of estimating other parameters. For the sake of determining signal number in the condition of strong additive noise or a little sample data, an algorithm for detecting number of wideband signals is provided. First, technique of focusing is used for transforming signals into a same focusing subspace. Then the support vector machine (SVM) can be deduced by the information of eigenvalues and corresponding eigenvectors. At last, the signal number can be determined with the obtained decision function. Several simulations have been carried on verifying the proposed algorithm. 相似文献