首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
介绍了一种改进的流水线模数转换器(ADC)数字校准算法,该算法使用了一个低速高精确度的参考ADC,同时结合了变步长的最小均方误差(LMS)滤波器校正流水线ADC的误差,从而提高校准速度和精确度。使用Verilog HDL语言设计了这种后台数字校准算法的寄存器传输级(RTL)电路,同时采取Simulink和Modelsim联合仿真的方法对电路进行验证。验证结果表明,与固定步长的校准算法相比,改进的校准算法拥有更快的收敛速度和更高的收敛精确度。  相似文献   

2.
流水线ADC中运算放大器在设计过程中为了满足建立速度的要求,往往无法达到较高的信号建立精度,从而导致流水线ADC中的乘法数模转换器(MDAC)出现增益误差。提出一种基于伪随机噪声注入的数字后台校准方法,对MDAC的级间增益进行校准。将该校准算法应用于一款12 bit 250 MS/s的流水线ADC,仿真结果表明,校准后流水线ADC的有效位数(ENOB)可达到11.826 bit,信噪失真比(SNDR)可达72.95 d B,无杂散动态范围(SFDR)可达89.023 d B。  相似文献   

3.
数字校准是高速高精度流水线ADC设计中的关键技术之一。文章提出了一种可通过校准控制生成测试信号,自动计算权重来对流水线ADC中电容失配进行误差补偿的技术。该技术能有效地减小增益有限、电荷注入等非理想因素的影响,使校准输出后的数据拥有更高的准确度,提高了系统的线性度。  相似文献   

4.
高精度流水线ADC的设计需要校准技术来提高其转换精度.基于统计的数字后台校准方法无需校准信号,直接通过对输出的统计得到误差值的大小,将其从数字输出中移除从而消除了ADC输出非线性.将该校准方法应用于14bit流水线ADC中,仿真结果表明校准后信噪失真比SNR为76.9dB,无杂散动态范围SFDR为73.9dB,有效精度ENOB从9bit提高到12.5bit.  相似文献   

5.
燕振华  李斌  吴朝晖 《微电子学》2016,46(5):595-598
提出了基于冗余子级的流水线ADC后端校准技术,采用精度较高的流水线冗余子级代替参考ADC,对流水线ADC的各个子级校准,替代了对整个ADC的校准,使校准系统无需降频同步,较好地解决了传统校准系统中主信号通路与参考ADC信号通路不同步的问题。对Matlab/Simulink中搭建的精度为16位、采样频率为10 MS/s的流水线ADC进行仿真,结果表明,当输入信号频率为4.760 5 MHz时,经过校准,流水线ADC的有效位和无杂散动态范围分别由9.37位和59.96 dB提高到15.32位和99.55 dB。进一步的FPGA硬件验证结果表明,流水线ADC的有效位和无杂散动态范围分别为12.73位和98.62 dB,初步验证了该校准算法的可行性。  相似文献   

6.
针对MDAC中采样电容失配会降低ADC输出非线性性能的问题,提出了一种流水线ADC的前台数字校准技术。该前台数字校准技术利用ADC输出积分非线性的相对偏差提取误差,利用简单的多路选择运算单元进行误差补偿。在此基础上,采用Verilog HDL实现了RTL级描述并成功流片。仿真和测试结果表明,该校准算法能够提升ADC输出性能。  相似文献   

7.
本文给出了一个基于0.18um CMOS工艺的12bit 100MS/s的流水线ADC。其中第一级采用了3.5比特结构以降低对电容匹配的要求,采样保持放大器、第一级和第二级均采用了自举开关以改善ADC线性度,后级采用级缩减技术节省了功耗和面积。当输入信号频率为15.5MHz、采样率为100MHz时,该ADC达到了79.8dB的SFDR和10.5bit的有效位数。芯片采用1.8V电压供电,包含输出驱动的总功耗为112mW, 芯片面积为3.51mm2 。  相似文献   

8.
对于流水线模数转换器(ADC),电容失配是一种主要的非线性误差源.为了减小电容失配误差,提出了一种电容失配校准的方法.该方法通过一种电荷相加、电容交换和电荷反转移的电路技术,可将电容失配误差减小至其2次项.基于所提出的方法,设计了一种0.6μm CMOS,13b,2MS/s的流水线ADC实验芯片.对所设计的实验芯片进行测试,得到了0.5LSB的DNL和2.5LSB的INL,并且当以614kHz的采样率对19.2kHz的输入进行转换时,得到了71.2dB的SFDR和64.1dB的SNDR,当以2MHz的采样率对125kHz的输入进行转换时,得到了70.6dB的SFDR和62.22dB的SNDR以上结果表明,ADC得到了超出电容匹配精度的线性度,证明了所采用的电容失配校准方法的有效性.  相似文献   

9.
对于流水线模数转换器(ADC),电容失配是一种主要的非线性误差源. 为了减小电容失配误差,提出了一种电容失配校准的方法. 该方法通过一种电荷相加、电容交换和电荷反转移的电路技术,可将电容失配误差减小至其2次项. 基于所提出的方法,设计了一种0.6μm CMOS,13b, 2MS/s的流水线ADC实验芯片. 对所设计的实验芯片进行测试,得到了0.5LSB的DNL和2.5LSB的INL,并且当以614kHz的采样率对19.2kHz的输入进行转换时,得到了71.2dB的SFDR和64.1dB的SNDR,当以2MHz的采样率对125kHz的输入进行转换时,得到了70.6dB的SFDR和62.22dB的SNDR. 以上结果表明,ADC得到了超出电容匹配精度的线性度,证明了所采用的电容失配校准方法的有效性.  相似文献   

10.
周立人  罗磊  叶凡  许俊  任俊彦 《半导体学报》2009,30(11):115007-5
This paper presents a 12-bit 100 MS/s CMOS pipelined analog-to-digital converter (ADC) with digital background calibration. A large magnitude calibration signal is injected into the multiplying digital-to-analog converter (MDAC) while the architecture of the MDAC remains unchanged. When sampled at 100 MS/s, it takes only 2.8 s to calibrate the 12-bit prototype ADC and achieves a peak spurious-free dynamic range of 85 dB and a peak signal-to-noise plus distortion ratio of 66 dB with 2 MHz input. Integral nonlinearity is improved from 1.9 to 0.6 least significant bits after calibration. The chip is fabricated in a 0.18μm CMOS process, occupies an active area of 2.3 × 1.6 mm^2, and consumes 205 mW at 1.8 V.  相似文献   

11.
Two novel calibration techniques based on dither injection and correlation are proposed. The first calibration algorithm utilises digital windows around the residue folding points by adding more comparators. Then all the capacitor mismatches and the linear gain error of the residue amplifier (RA) are calibrated by injecting dither signal in the windows. This new scheme would not change the key analogue signal path and thus brings no dither leakage in the digital domain. The other calibration algorithm injects dither signal into the split sampling capacitors to estimate the nonlinear kick-back error, which always exists in sample-hold amplifier less (SHA-less) structure. In addition, three other dither signals are injected into the added capacitors to calibrate the linear and nonlinear errors of the RA, which relaxes gain requirement in multiplying digtital-analogue-converter . Both the algorithms and the corresponding analogue-digital-converters (ADCs) are constructed and simulated in MATLAB. According to the simulation results, the first calibration technique increases signal-noise-distortion-ratio (SNDR) and spurious-free-dynamic-range (SFDR) by 40 and 42 dB, respectively. The second calibration scheme improves SNDR and SFDR by 19 and 34 dB in a SHA-less ADC.  相似文献   

12.
In the presented work, digital background calibration of a charge pump based pipelined ADC is presented. A 10-bit 100 MS/s pipelined ADC is designed using TSMC 0.18 µm CMOS technology operating on a 1.8 V power supply voltage. A power efficient opamp-less charge pump based technique is chosen to achieve the desired stage voltage gain of 2 and digital background calibration is used to calibrate the inter-stage gain error. After calibration, the ADC achieves an SNDR of 66.78 dB and SFDR of 79.3 dB. Also, DNL improves to +0.6/–0.4 LSB and INL improves from +9.3/–9.6 LSB to within ±0.5 LSB, consuming 16.53 mW of power.  相似文献   

13.
Dither-based digital background calibration algorithm has been used to eliminate the influence of linear and nonlinear errors in pipelined ADC. However, this algorithm suffers from two disadvantages: too slow convergent speed and deduction of transmitting signal’s amplitude in analog circuits due to dither injection. Input-dependent variable-amplitude dither-based algorithm is used in this paper to conquer both disadvantages. This proposed algorithm is implemented in a 14-bit, 100 MHz sample-rate pipelined ADC. The simulation results illustrate signal-to-noise and distortion (SINAD) of 76.56 dB after calibration of linear and nonlinear errors. Furthermore, the convergent speed is improved much more.  相似文献   

14.
Zhou Liren  Luo Lei  Ye Fan  Xu Jun  Ren Junyan 《半导体学报》2009,30(11):115007-115007-5
This paper presents a 12-bit 100 MS/s CMOS pipelined analog-to-digital converter (ADC) with digital background calibration. A large magnitude calibration signal is injected into the multiplying digital-to-analog converter (MDAC) while the architecture of the MDAC remains unchanged. When sampled at 100 MS/s, it takes only 2.8 s to calibrate the 12-bit prototype ADC and achieves a peak spurious-free dynamic range of 85 dB and a peak signal-to-noise plus distortion ratio of 66 dB with 2 MHz input. Integral nonlinearity is improved from 1.9 to 0.6 least significant bits after calibration. The chip is fabricated in a 0.18μm CMOS process, occupies an active area of 2.3×1.6 mm~2, and consumes 205 mW at 1.8 V.  相似文献   

15.
《Microelectronics Journal》2015,46(9):795-800
The paper introduces a sub-binary architecture in 16-bit split-capacitor successive-approximation register (SAR) analog-to-digital converters (ADCs). The redundancy in sub-binary capacitors array provides ways to correct the dynamic errors in conversion procedure with a smaller overall conversion time. So the redundancy can be used to solve the mismatch or parasitic problems in split-capacitor CDAC SAR. A background digital calibration method with perturbation is utilized to calibrate the conversion errors. The behavioral simulation and measured results show that the 16-bit SAR ADC performance can be improved after the digital calibration. The prototype was fabricated in 0.18 μm CMOS process. The INL are −6/7.813 LSB, the DNL are −0.925/1.313 before calibration. After calibration, the INL are −0.813/0.938, the DNL are −0.625/0.688. The measured ENOB is 11.42 bit and SFDR is 79.95 dB before calibration, while the ENOB is 14.46 bit and SFDR is 95.65 dB after calibration.  相似文献   

16.
This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC).The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom(PN) sequence injection capacitors at the ADC initialization,while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation.The presented technique not only reduces the complexity of analog circuit by eliminating the implementation of PN sequence with accurate amplitude in analog domain,but also improves the performance of digital background calibration by minimizing the sensitivity of calibration accuracy to sub-ADC errors.The use of opamps with low DC gains in normal operation makes the proposed design more compatible with future nanometer CMOS technology.The prototype of a 12-bit 40-MS/s pipelined ADC with the two-mode digital calibration is implemented in 0.18-μm CMOS process.Adopting a simple telescopic opamp with a DC gain of 58-dB in the first stage,the measured SFDR and SNDR within the first Nyquist zone reach 80-dB and 66-dB,respectively.With the calibration,the maximum integral nonlinearity (INL) of the ADC reduces from 4.75-LSB to 0.65-LSB,while the ADC core consumes 82-mW at 3.3-V power supply.  相似文献   

17.
殷秀梅  赵南  玻梅  杨华中 《半导体学报》2011,32(3):035001-7
This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC).The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom(PN) sequence injection capacitors at the ADC initialization,while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation.The presented technique not only reduces the complexity of analog circuit by eliminating the...  相似文献   

18.
Digital calibration techniques are widely developed to cancel the non-idealities of the pipelined Analog-to-Digital Converters (ADCs). This letter presents a fast foreground digital calibration technique based on the analysis of error sources which influence the resolution of pipelined ADCs. This method estimates the gain error of the ADC prototype quickly and calibrates the ADC simultaneously in the operation time. Finally, a 10 bit, 100 Ms/s pipelined ADC is implemented and calibrated. The simulation results show that the digital calibration technique has its efficiency with fewer operation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号