首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
郑婷婷 《半导体技术》2024,(4):310-315+329
为了改善绝缘栅双极型晶体管(IGBT)器件关断损耗和导通压降之间的折中关系,同时降低器件制造成本,基于1 700 V电压平台设计了一种采用精细沟槽栅结构的IGBT。采用TCAD软件进行仿真,研究衬底电阻率、衬底厚度、沟槽栅深度、沟槽栅宽度、载流子存储层注入剂量、沟槽栅元胞结构等因素对精细沟槽栅IGBT器件性能参数的影响,确定了最优工艺参数,并对1 700 V精细沟槽栅IGBT芯片进行流片和封装。测试结果显示,相比普通沟槽栅IGBT模块,1 700 V精细沟槽栅IGBT模块在芯片面积减小34.2%的情况下,关断损耗降低了8.6%,导通压降仅升高5.5%,器件性价比得到了优化。  相似文献   

2.
针对沟槽型绝缘栅双极型晶体管(IGBT)栅电容较大、开关速度较慢的问题,基于内透明集电极(ITC)技术,将电荷耦合(CC)的思想应用于槽栅IGBT中。采用仿真工具MEDICI对电荷耦合内透明集电极IGBT(CC-ITC-IGBT)的击穿特性、导通特性和开关特性等进行了仿真研究,重点研究了电荷耦合区掺杂浓度和局域载流子寿命控制区(LCLC)载流子寿命对器件性能的影响,并和普通的槽栅内透明集电极IGBT进行了对比。结果表明,在给定的参数范围内,新结构在快速关断区域折中特性曲线更好,在低导通压降区域,优势变得不太明显,因而电荷耦合内透明集电极IGBT更适合做快速关断型。  相似文献   

3.
逆导型沟槽场终止绝缘栅双极型晶体管(RC Trench FS IGBT)是一种新型的功率半导体器件,具有成本低、体积小、可靠性高等优点.设计并实现了一款1200V逆导型沟槽FS IGBT.重点研究了逆导型绝缘栅门极晶体管(RC IGBT)特有的回扫现象,以及如何从结构设计上消除回扫现象,其次,对RC IGBT在不同的载流子寿命下,进行了开关特性、反向恢复特性的仿真.研究结果发现随着载流子寿命的降低,其开关时间、反向恢复特性都有一定程度的改善.依据器件的最优化设计进行了流片.测试结果验证了不同设计对电流回扫现象的影响,以及不同少子寿命下导通特性和反向恢复特性的变化规律,器件的性能得到优化.  相似文献   

4.
研究了沟槽栅与平面栅结构1 200V/20A场截止(Field-stop)型(绝缘栅双极型晶体管)(IGBT)的短路耐量特性,从测试电路参数与器件本身的结构与工艺两方面对具有沟槽栅及平面栅结构的场截止型IGBT进行了探究,其中热耗散为引起击穿的主要原因。实际制作了沟槽栅-场截止型IGBT,采用优化的正面沟槽结构结合背面场截止薄片工艺,选择了合适的集电极-发射极间的饱和电流保证器件具有较低的导通压降的同时减少了焦耳热的产生,提升了芯片自身的抗短路能力(tsc>12μs),有利于沟槽栅IGBT应用的可靠性。  相似文献   

5.
王瑞 《信息技术》2014,(5):28-30
随着绝缘栅双极性晶体管(IGBT)使用的电压等级越来越高,关于绝缘栅双极性晶体管(IGBT)开关暂态的研究显得尤为重要。在机理模型的基础上能细划分为MOSFET与BJT,即金属氧化层半导体场效晶体管与双极结型晶体管两个部分,对其进行建模,列举出模型参数提取方法。该模型可在Matlab中实现,把IGBT作为案例列出模型参数数值,分析比较高压开通暂态、关闭暂态与开关损耗仿真结果,以此检验机理模型对高压IGBT是否适用。  相似文献   

6.
介绍了当前绝缘栅双极晶体管(IGBT)的几种结构及沟槽型IGBT的发展现况,分析了高电压沟槽型非穿通(NPT)IGBT的结构及工艺特点。通过理论分析计算出初步器件的相关参数,再利用ISE仿真软件模拟器件的结构及击穿和导通特性,结合现有沟槽型DMOS工艺流程,确定了器件采用多分压环加多晶场板的复合终端、条状元胞、6μm深度左右沟槽、低浓度背面掺杂分布与小于180μm厚度的器件结构,可以很好地平衡击穿特性与导通特性对器件结构的要求。成功研制出1 200 V沟槽型NPT系列产品,并通过可靠性考核,经过电磁炉应用电路实验,结果表明IGBT器件可稳定工作,满足应用要求。该设计可适合国内半导体生产线商业化生产。  相似文献   

7.
电源管理     
IR推出采用焊前金属的汽车级绝缘栅双极晶体管IR推出采用焊前金属(SFM)的1200V绝缘栅双极晶体管(IGBT)AUIRG7CH80K6B-M,适用于电动汽  相似文献   

8.
随着绝缘栅双极性晶体管(IGBT)使用的电压等级越来越高,关于绝缘栅双极性晶体管(IGBT)开关暂态的研究显得尤为重要。在机理模型的基础上能细划分为MOSFET与BJT,即金属氧化层半导体场效晶体管与双极结型晶体管两个部分,对其进行建模,列举出模型参数提取方法。该模型可在Matlab中实现,把IGBT作为案例列出模型参数数值,分析比较高压开通暂态、关闭暂态与开关损耗仿真结果,以此检验机理模型对高压IGBT是否适用。  相似文献   

9.
基于现有仿真及工艺平台,设计一款3 300V/50A场截止型绝缘栅双极晶体管器件(FS-IGBT),元胞采用场截止型平面栅结构,元胞注入采用自对准工艺,背面P型集电极采用透明集电极技术,降低导通状态的饱和压降。采用二维数值仿真主要研究了FS结构以及P~+集电极掺杂参数对器件性能的影响,通过参数拉偏仿真,重点分析了FS层和集电极P区注入剂量对器件参数的影响,确认了最佳的工艺窗口条件。通过合作方工艺平台对最终的结构进行了加工,最终测试结果显示IGBT器件通态压降为2.8V,击穿电压大于4 250V,关断损耗37mJ,开通损耗50mJ。  相似文献   

10.
为改善场终止型绝缘栅双极型晶体管(FS-IGBT)电场终止能力的可靠性,对一种缓变场终止型绝缘栅双极型晶体管(GFS-IGBT)的特性进行了仿真研究.与传统FS-IGBT的突变场终止层不同,GFS-IGBT所具有的场终止层是一个厚度为20~30 μm,峰值掺杂浓度为3.5×1015 cm-3的缓变场终止层.采用Sentaurus TCAD仿真软件,对600 V/20 A的FS-IGBT与GFS-IG-BT和非穿通型IGBT (NPT-IGBT)在导通、开关和短路特性等方面进行了对比仿真.结果表明,在给定的参数范围内,GFS-IGBT具有更低的通态压降、良好的关断电压波形以及更小的关断能耗.最后介绍了一种针对600 V IGBT器件的缓变场终止结构的制造技术.  相似文献   

11.
A novel trench field stop (TFS) IGBT with a super junction (SJ) floating layer (SJ TFS-IGBT) is proposed.This IGBT presents a high blocking voltage (>1200 V), low on-state voltage drop and fast turn-off capability. A SJ floating layer with a high doping concentration introduces a new electric field peak at the anode side and optimizes carrier distribution, which will improve the breakdown voltage in the off-state and decrease the energy loss in the on-state/switching state for the SJ TFS-IGBT. A low on-state voltage (VF) and a high breakdown voltage (BV) can be achieved by increasing the thickness of the SJ floating layer under the condition of exact charge balance. A low turn-off loss can be achieved by decreasing the concentration of the P-anode. Simulation results show that the BV is enhanced by 100 V, VF is decreased by 0.33 V (at 100 A/cm2) and the turn-off time is shortened by 60%, compared with conventional TFS-IGBTs.  相似文献   

12.
叶俊  傅达平  罗波  赵远远  乔明  张波 《半导体学报》2010,31(11):114008-5
本文提出了一种带有超结浮空层的槽栅场阻IGBT,它具有高的击穿电压(>1200V),低的正向压降和快速的关断能力。高掺杂的 SJ 浮空层在阳极侧引入了电场峰的同时优化了器件内载流子分布,带来关态击穿电压提高,开态、开关态能量损耗减少等好处。在保持电荷平衡的前提下,增加 SJ 浮空层的厚度可以提高击穿电压和降低正向压降,降低 P 型阳极浓度可以减少关断损耗。与传统结构相比,新结构击穿电压提高了100V,正向压降降低了0.33V(电流密度为100A/cm2),关断时间缩短了60%。  相似文献   

13.
The breakdown capability of the trench superjunction (SJ) VDMOS with strip gate and rounded corner layout pattern is experimentally investigated. The investigation shows that the local charge imbalance of device’s corner is the reason for breakdown voltage degradation. In order to improve the breakdown capability and reliability of the device, an analytical model which is verified by the simulation using Sentaurus TCAD and experiment results is proposed to optimize the doping of p-pillar with respect to different cell pitches and corner radiuses. Finally, two robust 600 V trench SJ-VDMOS structures with different curvatures of the corner are proposed and fabricated.  相似文献   

14.
In this paper we introduced the shielding region concept in order to relieve the electric field concentrated on the trench bottom corner. The shielded trench gate insulated gate bipolar transistor (IGBT) is a trench gate IGBT with a P+shielding region located in the bottom of a trench gate. By simulation results, we verified that a shielding region reduced the electric fields not only in the gate oxide but also in the P-base region. Compared with conventional trench gate IGBT, about 33% increment of forward breakdown voltages are achieved, but little forward voltage drop, which causes on-state loss to be increased by about 0.06 V in the shielded trench gate IGBT.  相似文献   

15.
提出了一种具有积累层沟道的槽栅IGBT结构。仿真结果表明:在阻断电压为1200V,集电极电流密度为100 A/cm2,温度分别为300K和400K下的情况下,积累层沟道槽栅IGBT的正向压降分别为1.5V 和2V而常规槽栅IGBT分别为1.7V和2.4V。新结构比常规槽栅IGBT具有更低的开态压降和更大的正向安全工作区。文中同时分析了积累层沟道槽栅IGBT的阻断特性和关断特性。  相似文献   

16.
An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu-lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 and 2 V at a temperature of 300 and 400 K, respectively, at a collector current density of 100 A/cm~2. In contrast, the on-state voltage drops of a conventional trench gate IGBT (CT-IGBT) are 1.7 and 2.4 V at a temperature of 300 and 400 K,respectively. Compared to the CT-IGBT, the ACT-IGBT has a lower on-state voltage drop and a larger forward bias safe operating area. Meanwhile, the forward blocking characteristics and turn-off performance of the ACT-IGBT are also analyzed.  相似文献   

17.
刘江  高明超  朱涛  冷国庆  王耀华  金锐  温家良  潘艳 《半导体技术》2017,42(11):855-859,880
使用TCAD仿真软件对3 300 V沟槽栅IGBT的静态特性进行了仿真设计.重点研究了衬底材料参数、沟槽结构对器件击穿电压、电场峰值等参数的影响.仿真结果表明,随衬底电阻率增加,击穿电压增加,饱和电压和拐角位置电场峰值无明显变化;随衬底厚度增加,击穿电压增加,饱和电压增加,拐角位置电场峰值降低;随沟槽宽度增加,饱和电压降低,击穿电压和拐角位置电场峰值无明显变化;随沟槽深度增加,饱和电压降低,击穿电压无明显变化,拐角位置电场峰值增加;随沟槽拐角位置半径增加,击穿电压和饱和电压无明显变化,但拐角位置电场峰值减小.选择合适的衬底材料对仿真结果进行实验验证,实验结果与仿真结果相符,制备的IGBT芯片击穿电压为4 128 V,饱和电压约为2.18 V.  相似文献   

18.
本文提出了一种具有P型浮空层的新型槽栅IGBT结构,它是在之前所提的一种积累层沟道控制的槽栅IGBT(TAC-IGBT)基础之上引入了一浮空P型层。此结构在维持原有TAC-IGBT低的正向导通压降和更大正向偏置安全工作区(FBSOA)的同时,减小了器件的泄漏电流,提高了器件的击穿电压,也使得器件的短路安全工作区大大提高,且制造简单,设计裕度增大。仿真结果表明:对于1200V的IGBT器件,具有P型浮空层的新型槽栅IGBT结构漏电比TAC-IGBT小近一个量级,击穿电压提高近150V。  相似文献   

19.
A new trench gate IGBT structure with a floating P region is proposed,which introduces a floating P region into the trench accumulation layer controlled IGBT(TAC-IGBT).The new structure maintains a low on-state voltage drop and large forward biased safe operating area(FBSOA)of the TAC-IGBT structure while reduces the leakage current and improves the breakdown voltage.In addition,it enlarges the short circuit safe operating area(SCSOA)of the TAC-IGBT,and is simple in fabrication and design.Simulation results indicate that,for IGBT structures with a breakdown voltage of 1200 V, the leakage current of the new trench gate IGBT structure is one order of magnitude lower than the TAC-IGBT structure and the breakdown voltage is 150 V higher than the TAC-IGBT.  相似文献   

20.
针对传统沟槽栅4H-SiC IGBT关断时间长且关断能量损耗高的问题,文中利用Silvaco TCAD设计并仿真了一种新型沟槽栅4H-SiC IGBT结构。通过在传统沟槽栅4H-SiC IGBT结构基础上进行改进,在N +缓冲层中引入两组高掺杂浓度P区和N区,提高了N +缓冲层施主浓度,折中了器件正向压降与关断能量损耗。在器件关断过程中,N +缓冲层中处于反向偏置状态的PN结对N -漂移区中电场分布起到优化作用,加速了N -漂移区中电子抽取,在缩短器件关断时间和降低关断能量损耗的同时提升了击穿电压。Silvaco TCAD仿真结果显示,新型沟槽栅4H-SiC IGBT击穿电压为16 kV,在15 kV的耐压设计指标下,关断能量损耗低至4.63 mJ,相比传统结构降低了40.41%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号