首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The in-vitro synthesis of hemoglobin (Hb) chains was studied among 60 Hb S heterozygotes (AS) having different quantities of Hb S, including five with an associated alpha-chain heterozygosity (ASAG). Hematologic values and hemoglobin composition were studied in these cases and in 15 other ASAG heterozygotes. The percentages of Hb S (which fell between 27% and 42%) and the mean corpuscular volume values correlated directly with the alpha/non-alpha values, confirming previous suggestions (Huisman, Hemoglobin 1:349, 1977) that the concomitant occurrence of an alpha-thalassemia-2 heterozygosity (alpha alpha(0)/alpha alpha; beta/beta(S)) or homozygosity (alpha(0) alpha/alpha(0) alpha; beta/beta(S)) resulted in intermediate or lower levels of Hb S compared with Hb S heterozygotes having four active alpha-chain genes (alpha alpha/alpha alpha; beta/beta(S)). Among ASAG heterozygotes, the occurrence of low (about 25%), intermediate (about 33%), or high (about 45%) proportions of an alpha-chain variant resulting from a variability in the number of active alpha-chain genes due to alpha-thal-2 coincided with high (39%), intermediate (34%), or low (28%) levels of Hb S, respectively. However, the overlap of biosynthetic data between Hb S heterozygotes with four, three, or two active alpha-chain genes prevents a reliable diagnosis in individual cases.  相似文献   

2.
Isoelectrofocusing and high performance liquid chromatographic methods were used to study an abnormal hemoglobin present in a Black male infant and his mother. The variant, named Hb Sinai-Baltimore, focused slightly behind Hb A and separated incompletely from Hb A by cation exchange high performance liquid chromatography, while the separation of the beta A and beta X chains by reversed phase high performance liquid chromatography was complete. The variant was identified through an analysis of peptides in a tryptic digest of the isolated beta X chain and by sequencing of amplified DNA which included the beta-globin gene. The Val->Gly replacement at position beta 18 (codon 18; GTG->GGG) or at the last position of the A helix decreases the stability of the variant without affecting the hematological parameters of its carrier. The propositus was a compound heterozygote for Hb Sinai-Baltimore and Hb S; the relative quantities of the two variant chains were somewhat different from those of the beta X and beta A chains in the mother with the simple Hb Sinai-Baltimore heterozygosity. An uncertainty about the alpha-globin gene status in the child prevented a further evaluation of these differences.  相似文献   

3.
Retinoic acid (RA) up-regulates retinoic acid receptor beta (RAR beta) gene expression in a variety of cell lines. Whether up-regulation of the RAR beta gene reflects increased activity in a RAR beta-mediated biological process is unclear since RAR beta tends to heterodimerize with retinoid x receptor (RXR). In F9 teratocarcinoma cell line, RA-induced differentiation is accompanied by increased expression of the RAR beta, RXR alpha, and alpha-fetoprotein (AFP) genes. Previously, we have shown that the RA-mediated regulation of the AFP gene is through RXR alpha homodimers. In contrast to F9 cells, Hep3B is unique in that the AFP gene is down-regulated by RA in a manner reminiscent of down-regulation of AFP in postfetal liver. In this paper, we have examined the RA-mediated regulation of the RAR, RXR, peroxisome proliferator-activated receptor (PPAR), and AFP genes in Hep3B cells. RA induced the expression of RAR alpha, beta, and gamma mRNA in Hep3B cells. However, the expression of RXR alpha mRNA was down-regulated, and the levels of RXR beta and RXR gamma mRNA remained unchanged after RA treatment. In addition, the expression of the PPAR alpha, beta, and gamma genes was also unchanged. Gel retardation assays demonstrated that RA decreased the overall binding of nuclear receptors to the RA and PPAR response elements. By super-shift assays using specific anti-RAR and -RXR antibodies, RA treatment decreased the amount of RXR alpha while increasing the amount RAR beta bound to retinoic acid response element-DR1 (direct repeat with spacer of one nucleotide), indicating the levels of RAR/RXR heterodimer, RXR/RXR homodimer, or RAR/RAR homodimers were altered upon RA treatment of Hep3B cells. In addition, the RA-mediated reduction of RXR alpha in part results in down-regulation of the AFP gene. Our data indicates that RA exerts its effects by differentially regulating its own receptor gene expression.  相似文献   

4.
BACKGROUND: Laminin-5 (ln-5), a large heterotrimeric glycoprotein consisting of an alpha 3, beta 3, and gamma 2 chain, is a component of epithelial cell basement membranes that functions as a ligand of the alpha 3 beta 1 and alpha 6 beta 4 integrins to regulate cell adhesion, migration, and morphogenesis. The ln-5 chains show tissue-specific patterns of regulation in tumors derived from different tissues. For example, ln-5 is often up-regulated in gliomas, gastric carcinomas, and squamous carcinomas and down-regulated in prostate and basal cell carcinomas. Ln-5 expression patterns may represent useful tumor markers and help to elucidate the role of ln-5 in tumor progression in different tissue types. MATERIALS AND METHODS: We have studied ln-5 expression patterns in the breast. mRNA levels were examined in tumor and normal breast epithelial cell lines, tissue samples, and immunomagnetically sorted primary cultures using differential display, Northern blotting, and hybridization arrays. Protein levels were examined by immunoprecipitation. Gene integrity was assessed by Southern blotting of representative cell types. RESULTS: Ln-5 alpha 3, beta 3, and gamma 2 mRNA expression was found to be markedly down-regulated in a panel of breast tumor cell lines when compared with normal breast epithelial cells. Ln-5 mRNA was expressed at relatively high levels in MCF-10A immortal normal breast epithelial cells, long-term cultures of normal breast cells, and sorted primary cultures of normal breast luminal epithelial and myoepithelial cells. Reduced, but detectable, levels of ln-5 tended to be expressed in cell lines derived from early-stage breast tumors, whereas expression was generally not detected in cell lines derived from later-stage tumors. In breast tumor tissue specimens, expression of ln alpha 3 and beta 3 mRNAs tended to be reduced relative to levels observed in adjacent nontumor tissue, whereas in gamma 2 levels were elevated in specimens with increased amounts of myoepithelial cells. These ln-5 expression changes could not be attributed to large-scale mutations or gene rearrangements. Ln-5 protein levels were found to reflect mRNA levels in representative cell lines. At senescence, a growth state believed to suppress tumorigenesis, expression of all three ln-5 mRNAs was up-regulated. CONCLUSION: The down-regulation of ln-5 mRNA expression in breast tumors cells provides a new molecular marker and suggests that ln-5 functions to control tumor progression in the breast.  相似文献   

5.
gamma-Aminobutyric acidA (GABA(A)) gated chloride ion channels were expressed from human recombinant cDNA using the baculovirus/Sf-9 insect cell expression system. The electrophysiological effects in whole-cell currents of 5-(4-piperidyl) isoxazol-3-ol (4-PIOL), a GABA(A) receptor partial agonist, were investigated on GABA(A) receptor complexes of alpha1beta2gamma2S subunits as well as a slightly modified construct of alpha1(valine 121)beta2gamma2S subunits. Here we report that (1)4-PIOL induces an inward whole-cell current in a concentration-dependent manner in both alpha1(val 121)beta2gamma2S and alpha1(ile 121)beta2gamma2S receptor subunit combinations. (2) The 4-PIOL induced whole-cell currents were more pronounced in alpha1(val 121)beta2gamma2S than in alpha1(ile 121)beta2gamma2S receptor subunit combinations. (3) 4-PIOL inhibited GABA-induced responses on alpha1(ile 121)beta2gamma2S and alpha1(val 121)beta2gamma2S receptor combinations with similar potency.  相似文献   

6.
The GABA(A) receptor is a ligand gated chloride channel consisting of five membrane spanning proteins for which 13 different genes have been identified in the mammalian brain. The present review summarizes recent work from our laboratory on the characterization of the immunocytochemical distribution of these GABA(A) receptor subunits in the rat brain and changes in immunoreactivity and mRNA expression after kainic acid-induced status epilepticus. A heterogeneous distribution of immunoreactive GABA(A) receptor subunits was observed. The most abundant ones were: alpha1, alpha2, alpha4, alpha5, beta2, beta3, gamma2, and delta. Alpha1, beta2, and gamma2 were about equally distributed in all subfields of the hippocampus; alpha4- and delta-subunits were preferentially found in the dentate molecular layer and in CA1; alpha2 was localized to the dentate molecular layer and CA3; alpha5 was found in the dendritic areas of CA1 to CA3; and beta1 was preferentially seen in CA2. Alpha1, beta2, gamma2 and delta were highly concentrated in interneurons. Kainic acid-induced seizures caused acute and chronic changes in the expression of mRNAs and immunoreactive proteins. Acute changes included decreases in alpha2, alpha5, beta1, beta3, gamma2 and delta mRNA levels (by about 25-50%), accompanied by increases (by about 50%) in alpha1, alpha4, and beta2 messages in granule cells (after 6-12 h). Chronic changes, characterized by losses in mRNA and immunoreactive proteins in CA1 and CA3, are undoubtedly due to seizure-related cell damage. However, compensatory expression of alpha2 and beta3 subunits, especially in CA3b/c, was observed. Furthermore, increases in mRNAs and immunoreactive proteins were seen for alpha1, alpha2 alpha4, beta1, beta2, beta3 and gamma2 in granule cells and in the molecular layer of the dentate gyrus at 7-30 days after kainic acid injection. The changes in the expression of GABA(A) receptor subunits, observed in practically all hippocampal subfields, may reflect altered GABA-ergic transmission during development of the epileptic syndrome. Increased expression of GABA(A) receptor subunits in the dendritic field of granule cells and CA3 suggest that GABA-ergic inhibition may be augmented at these levels. However, the lasting preservation of alpha1-, beta2-, and gamma2-subunits in interneurons could provide a basis for augmented inhibition of GABA-ergic interneurons, leading to net disinhibition.  相似文献   

7.
8.
Human leukemia K-562(S) cells are a useful model system to study the relationship between cell proliferation and induced erythroid differentiation. In these studies K-562(S) cells were cultured in alpha -medium, 10% fetal calf serum and induced to express erythroid genes by 75 microM hemin, 1.2 mM butyric acid or 1.5 ng/ml actinomycin D. Cell number was determined using a ZF Coulter Counter and the increase in the proportion of hemoglobin-containing cells was detected by a specific colorimetric reaction with benzidine. The characterization of the synthesized hemoglobins was performed by cellulose-acetate gel electrophoresis of post-mitochondrial supernatants. By cloning K-562(S) cells in semi-solid medium (O,33% agar) containing 75 microM hemin a variant cell line, denominated K-562(S6), have been isolated which does not undergo terminal cell division but does express human globin genes and accumulates on the average 12 pg of Hb/cell. K-562(S6) cells accumulate, upon exposure to 75 microM hemin, mostly Hb Gower 1 (zeta 2 epsilon 2) and low amounts of Hb X (epsilon 2 gamma 2) and Hb Portland (zeta 2 gamma 2), being suitable for studies focused on the expression of embryonic globin genes and on the molecular mechanisms controlling the switching from embryonic-type to fetal-type hemoglobin accumulation, when in the human embryo zeta and epsilon globin genes become less active, being sharply increased accumulation of alpha and gamma globin chains.  相似文献   

9.
alpha 1, beta 1, and gamma 2S gamma-aminobutyric acid (GABA) type A receptor (GABAR) subunit cDNAs were transiently expressed in derivative cell lines of mouse L929 fibroblasts, which possessed different levels of the catalytic subunit of cAMP-dependent protein kinase (PKA). These cell lines included L929 (intermediate levels of kinase), C alpha 12 (elevated levels of kinase), and RAB10 (low levels of kinase) cells. Pharmacological analysis of GABA-evoked whole-cell currents revealed that, compared with expression in L929 and RAB10 cells, expression of alpha 1 beta 1 gamma 2S GABARs in C alpha 12 cells produced a selective enhancement of single whole-cell current amplitudes. No other pharmacological properties (Hill slope, EC50, or diazepam sensitivity) of the expressed alpha 1 beta 1 gamma 2S GABARs were modified. The GABAR current enhancement in C alpha 12 cells was blocked by substitution of a beta 1 subunit mutated at the PKA consensus phosphorylation site, Ser409 [beta 1(S409A)], for the wild-type beta subunit. Interestingly, enhancement was specific for GABARs containing all three subunits, because it was not seen after expression of alpha 1 beta 1 or alpha 1 beta 1 (S409A) GABAR subunit combinations. Single-channel conductance and gating properties were not different for alpha 1 beta 1 gamma 2S or alpha 1 beta 1 (S409A) gamma 2S GABARs expressed in each cell line, suggesting that PKA did not enhance whole-cell currents by altering these properties of GABARs. These results suggested that unlike acute application of PKA, which has been shown to produce a decrease in GABAR current, chronic elevation of PKA activity can result in enhancement of GABAR currents. More importantly, this effect occurred only with GABARs composed of alpha 1 beta 1 gamma 2S subunits and not alpha 1 beta 1 subunits and was mediated by a single amino acid residue (Ser409) of the beta 1 subunit.  相似文献   

10.
Modification of GABAA receptor mRNA levels by seizure activity can regulate general neuronal excitability. The possibility of absence seizure-induced alteration in GABAA receptor alpha 1, alpha 4, beta 2, and gamma 2 subunit gene expression in thalamic relay nuclei was studied in a rat model of absence seizures induced by gamma-hydroxybutyric acid (GHB). We observed a marked increase in alpha 1 mRNA and a corresponding decrease in alpha 4 mRNA in thalamic relay nuclei 2-4 h after the onset of GHB-induced absence seizures (when the seizures were terminating). These changes were selective to these alpha isoforms as neither beta 2 nor gamma 2 mRNA changed following seizures and occurred only in thalamic relay nuclei but not in hippocampus, a structure from which absence seizures do not evolve. The alterations in alpha 1 and alpha 4 mRNA persisted until about 12 h, and by 24 h after the seizure-onset the mRNA levels normalized. Blocking GHB-seizures produced no change in the levels of alpha 1 and alpha 4 mRNA in thalamic relay nuclei, suggesting that seizures themselves were responsible for mRNA alterations. In order to determine if absence seizure-induced changes in alpha 1 and alpha 4 mRNA had any physiological significance, GHB was readministered in rats 6 and 24 h after the onset of seizures. The total duration of GHB-seizures was found to be significantly decreased when GHB was readministered at 6 h but not 24 h after the seizure-onset. These results suggest that absence seizures regulate GABAA receptor alpha 1 and alpha 4 gene expression in thalamic relay nuclei as a compensatory mechanism by which absence seizures are terminated.  相似文献   

11.
The gamma 2 subunit is necessary for the expression of the full benzodiazepine pharmacology of GABAA receptors and is one of the major subunits in the brain. In order to determine the location of channels containing the gamma 2 subunit in relation to GABA-releasing terminals on the surface of neurons, a new polyclonal antipeptide antiserum was developed to the gamma 2 subunit and used in high resolution, postembedding, immunoelectron-microscopic procedures. Dual immunogold labelling of the same section for two subunits, and up to three sections of the same synapse reacted for different subunits, were used to characterize the subunit composition of synaptic receptors. The gamma 2 subunit was present in type 2, "symmetrical" synapses in each of the brain areas studied, with the exception of the granule cell layer of the cerebellum. The gamma 2 subunit was frequently co-localized in the same synaptic junction with the alpha 1 and beta 2/3 subunits. The immunolabelling of synapses was coincident with the junctional membrane specialization of the active zone. Immunolabelling for the receptor often occurred in multiple clusters in the synapses. In the hippocampus, the gamma 2 subunit was present in basket cell synapses on the somata and proximal dendrites and in axo-axonic cell synapses on the axon initial segment of pyramidal and granule cells. Some synapses on the dendrites of GABAergic interneurones were densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits. In the cerebellum, the gamma 2 subunit was present in both distal and proximal Purkinje cell dendritic synapses established by stellate and basket cell, respectively. On the soma of Purkinje cells, basket cell synapses were only weakly labelled. Synapses on interneuron dendrites were more densely labelled for the gamma 2, alpha 1 and beta 2/3 subunits than synapses on Purkinje or granule cells. Although immunoperoxidase and immunofluorescence methods show an abundance of the gamma 2 subunit in granule cells, the labelling of Golgi synapses was much weaker with the immunogold method than that of the other cell types. In the globus pallidus, many type 2 synapses were labelled for the gamma 2 subunit together with alpha 1 and beta 2/3 subunits. The results show that gamma 2 and beta 2/3 subunits receptor channels are highly concentrated in GABAergic synapses that also contain the alpha 1 and beta 2/3 subunits. Channels containing the gamma 2 subunit are expressed in synapses on functionally distinct domains of the same neuron receiving GABA from different presynaptic sources. There are quantitative differences in the density of GABAA receptors at synapses on different cell types in the same brain area.  相似文献   

12.
GABAA receptors composed of human alpha 1 beta 2 gamma 2L, alpha 1 beta 2 gamma 2S, alpha 1 beta 3 gamma 2S, alpha 6 beta 3 gamma 2S, and alpha 5 beta 3 gamma 3 subunits as well as bovine alpha 1 beta 1 gamma 2L and alpha 1 beta 1 subunits were stably expressed in mammalian L(tk-) cells and transiently expressed in Xenopus oocytes. Effects of muscimol, ethanol, flunitrazepam, and pentobarbital on receptor function were compared for the two expression systems using a 36Cl- flux assay for cells and an electrophysiological assay for oocytes. Muscimol activated all receptors in both expression systems but was more potent for L(tk-) cells than oocytes; this difference ranged from 2.6-to 26-fold, depending upon subunit composition. The most pronounced differences between receptors and expression systems were found for ethanol. In L(tk-) cells, low (5-50 mM) concentrations of ethanol potentiated muscimol responses only with receptors containing the gamma 2L subunit. In oocytes, concentrations of 30-100 mM produced small enhancements for most subunit combinations. Flunitrazepam enhanced muscimol responses for all receptors except alpha 6 beta 3 gamma 2S and alpha 1 beta 1, and this enhancement was similar for both expression systems. Pentobarbital also enhanced muscimol responses for all receptors, and this enhancement was similar for L(tk-) cells and oocytes, except for alpha 6 beta 3 gamma 2S where the pentobarbital enhancement was much greater in oocytes than cells. The alpha 6 beta 3 gamma 2S receptors were also distinct in that pentobarbital produced direct activation of chloride channels in both expression systems. Thus, the type of expression/assay system markedly affects the actions of ethanol on GABAA receptors and also influences the actions of muscimol and pentobarbital on this receptor. Differences between these expression systems may reflect posttranslational modifications of receptor subunits.  相似文献   

13.
14.
The proportion of CD4- CD8- double-negative (DN) alpha beta T cells is increased both in the thymus and in peripheral lymphoid organs of TCR alpha chain-transgenic mice. In this report we have characterized this T cell population to elucidate its relationship to alpha beta and gamma delta T cells. We show that the transgenic DN cells are phenotypically similar to gamma delta T cells but distinct from DN NK T cells. The precursors of DN cells have neither rearranged endogenous TCR alpha genes nor been negatively selected by the MIsa antigen, suggesting that they originate from a differentiation stage before the onset of TCR alpha chain rearrangements and CD4/CD8 gene expression. Neither in-frame V delta D delta J delta nor V gamma J gamma rearrangements are over-represented in this population. However, since peripheral gamma delta T cells with functional TCR beta gene rearrangements have been depleted in the transgenics, we propose that the transgenic DN population, at least partially, originates from the precursors of those cells. The present data lend support to the view that maturation signals to gamma delta lineage-committed precursors can be delivered via TCR alpha beta heterodimers.  相似文献   

15.
The propositus was a 29-year-old Thai male, whose electrophoretic pattern showed Hb A (58%) plus an abnormal hemoglobin (42%) with mobility identical to Hb A2 and Hb E. Protein sequencer analysis and tryptic peptide mapping of the beta chain indicated that the abnormal hemoglobin was Hb C [beta 6(A3)Glu-->Lys], rather than Hb E which is more commonly found in South East Asia. This conclusion was confirmed by direct sequence analysis of the propositus' DNA, which showed AAG as well as GAG at codon 6 of the beta gene, in agreement with heterozygosity for Hb C and Hb A. Furthermore, the beta gene framework (Ava II-, Bam HI+) of the propositus suggested that the beta C gene may have arisen from an independent mutation. Since Hb C and Hb E have the same mutation (Glu-->Lys) in the beta chain, although at different positions, and behave similarly in electrophoresis, cases of Hb C and Hb E may sometimes have been mistakenly identified for each other, based on whichever variant is most prevalent in the particular population.  相似文献   

16.
Cyclic AMP (cAMP) inhibits antigen-stimulated B cell proliferation through activation of cAMP-dependent protein kinases (cAK). We have examined the molecular composition and cellular localization of cAK in human B cells. We find that human B cells contain substantial amounts of mRNA for RI alpha, RII alpha, C alpha and C beta, barely detectable levels of RI beta mRNA, and no detectable RII beta or C gamma mRNA. At the protein level, using Western blotting and subunit-specific antibodies against the different R subunits, we find RI alpha and RII alpha, but no RI beta or RII beta. The presence of catalytic subunits was demonstrated using a nonselective anti-C antiserum. By photoaffinity labeling of R subunits with 8-azido-[32P]cAMP, followed by immunoprecipitation with subunit-specific antibodies, we were also able to demonstrate low levels of RI beta. Immunofluorescence staining of RI alpha and RII alpha demonstrates a rather homogeneous intracellular (but extranuclear) distribution of RI alpha, whereas the RII alpha subunits of cAK are localized to distinct perinuclear structures, previously identified as centrosomes in other cell types. Upon anti-Ig-mediated capping of B cells, RI alpha subunits redistribute to the cap, co-localizing with the antigen-receptors, whereas the intracellular localization of RII alpha subunits remains unchanged.  相似文献   

17.
18.
19.
Numerous microbial pathogens, including Listeria monocytogenes, enter the host through the intestine. Although relatively little is known about the biological functions of intestinal intraepithelial lymphocytes (i-IEL), they are generally considered a first line of defense against intestinal infections. In the mouse, the vast majority of i-IEL express the CD8 coreceptor either as a CD8 alpha/alpha homodimer or as a CD8 alpha/beta heterodimer. The CD8 receptor of T-cell receptor TcR gamma/delta i-IEL is exclusively homodimeric, whereas the CD8-expressing TcR alpha/beta i-IEL segregate into equal fractions of CD8 alpha/alpha and CD8 alpha/beta cells. We infected beta 2-microglobulin (beta 2m)+/- mice (possessing all i-IEL populations) and beta 2m -/- mutant mice (lacking all CD8 alpha/beta + i-IEL and having few CD8 alpha/alpha + TcR alpha/beta i-IEL) with L. monocytogenes per os and determined their biological functions after TcR ligation with monoclonal antibodies. Cytolytic activities of TcR alpha/beta and TcR gamma/delta i-IEL from beta 2m +/- mice were not influenced by intestinal listeriosis. Cytolytic activities of TcR alpha/beta i-IEL were impaired in uninfected beta 2m -/- mice, but this reduction was reestablished as a consequence of intestinal listeriosis. Frequencies of gamma interferon (IFN-gamma)-producing TcR alpha/beta i-IEL in uninfected beta 2m -/- mice were reduced, compared with that in their heterozygous controls. Equally low frequencies of IFN-gamma-producing TcR gamma/delta i-IEL in beta 2M +/- and beta 2m-/- mutants were found. Listeriosis increased frequencies of INF-gamma-producing TcR alpha/beta and TcR gamma/delta i-IEL in both mouse strains. Most remarkably, the proportion of IFN-gamma-producing TcR gamma/delta i-IEL was elevated 10-fold in listeria-infected beta 2M -/- mice. Our findings show that the beta 2m-independent CD8 beta- i-IEL expressing either TcR alpha/beta or TcR gamma/delta are stimulated by intestinal listeriosis independent of regional beta 2m expression. We conclude that the three major CD8+ i-IEL populations are stimulated by intestinal listeriosis and that CD8 beta- i-IEL compensate for the total lack of CD8 beta+ i-IEL in beta 2M -/- mutant mice. Hence, in contrast to the peripheral immune system, which crucially depends on CD8 alpha/beta + TcR alpha/beta lymphocytes, the mucosal immune system can rely on additional lymphocytes expressing the CD8 alpha/alpha homodimer.  相似文献   

20.
Two families of nuclear receptors for retinoic acid (RA) have been characterized. Members of the RAR family (types alpha, beta and gamma and their isoforms alpha 1, alpha 2, beta 1 to beta 4, and gamma 1 and gamma 2) are activated by most physiologically occurring retinoids (all-trans RA, 9-cis RA, 4oxo RA and 3,4 dihyroRA). In contrast, members of the RXR family (types alpha, beta and gamma and their isoforms) are activated by 9cis-RA only. In addition to the multiplicity of receptors, the complexity of retinoid signalling is further increased by the fact that, at least in vitro, RARs bind to their cognate response elements as heterodimers with RXRs. Moreover, RXRs can also bind, in vitro, to some DNA elements as homodimers, and are heterodimeric partners for other nuclear receptors, including TRs, VDR, PPARs and a number of orphan nuclear receptors. To evaluate the functions of the different RARs and RXRs types and isoforms, we have generated null mutant mice by targeted gene disruption in ES cells. As to the functions of RARs, we found that RAR alpha 1 and RAR gamma 2 null mutant mice are apparently normal. Mice deficient in RAR alpha or RAR gamma (i.e., all alpha or gamma isoforms disrupted) show aspects of the post-natal vitamin A deficiency (VAD) syndrome which can be cured or prevented by RA, including post-natal lethality, poor weight gain and male sterility. RAR beta 2 (and RAR beta) null mutants display a retrolenticular membrane which represents the most frequent defect of the fetal VAD syndrome. That these abnormalities were restricted to a small subset of the tissues normally expressing these receptors suggested that some degree of functional redundancy should exist in the RAR family. To test this hypothesis we then generated RAR double null mutants. RAR alpha beta, RAR alpha gamma and RAR beta gamma compound mutants exhibit all the malformations of the fetal VAD syndrome, thus demonstrating that RA is the vitamin A derivative which plays a crucial role at many different stages and in different structures during organogenesis. Interestingly, almost all the structures derived from mesenchymal neural crests cells (NCC) are affected in RAR compound mutants. As to the functions of RXRs, RXR gamma null mutants are viable, fertile and morphologically normal. In contrast, RXR alpha null fetuses display a thin ventricular wall and die in utero from cardiac failure. A myocardial hypoplasia has also been observed in some RAR compound mutants as well as in VAD fetuses. Thus, RXR alpha seems to act as an inhibitor of ventricular cardiocyte differentiation and/or as a positive regulator of their proliferation, and these functions might involve heterodimerization with RARs and activation by RA. RXR beta null mutants are viable but the males are sterile, most probably because of an abnormal lipid metabolism in the Sertoli cells. New abnormalities, absent in RXR alpha mutants, are generated in RXR alpha/RAR (alpha, beta or gamma) compound mutants. All these abnormalities are also seen in RAR double mutants as well as in VAD fetuses. In contrast, such manifestations of synergism are not observed between the RXR beta or RXR gamma and the RAR (alpha, beta or gamma) null mutations. These data strongly support the conclusion that RXR alpha/RAR heterodimers represent the main functional units of the RA signalling pathway during embryonic development. Moreover, since RXR gamma-/-/RXR beta-/-/RXR alpha +/-mutants are viable, a single allele of RXR alpha can perform most of the developmental RXR functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号