首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用响应面分析法优化提高高浓啤酒醇酯比的发酵工艺条件。在单因素实验的基础上,选取麦汁溶解氧、接种酵母数、主发酵温度作为影响因子,以醇酯比为响应值,利用Box-Benhnken中心组合设计,研究各自变量及其交互作用对醇酯比的影响,模拟得到二次多项式回归方程预测模型,确定提高高浓啤酒醇酯比的优化条件是:麦汁溶解氧11.92 mg/L,接种酵母数2.59×107个/m L,主发酵温度10.9℃,在这一条件下,醇酯比达到4.35。方差分析结果表明,麦汁溶解氧含量对提高高浓啤酒醇酯比具有显著的调控作用。  相似文献   

2.
为降低高浓啤酒发酵中高级醇的生成量,研究18°Bx麦汁啤酒酿造过程中的加糖浆方式、酵母接种量和麦汁中α-氨基氮含量对啤酒高级醇生成量的影响。结果表明:18°Bx麦汁发酵高级醇生成量显著高于12°Bx麦汁;分两次加入制备18°Bx麦汁所需的糖浆量、控制18°Bx麦汁的酵母细胞接种量为3×107个/mL以及麦汁中α-氨基氮含量为230mg/L麦汁时,均有利于降低18°Bx高浓啤酒发酵过程中高级醇的生成量。  相似文献   

3.
影响成品酒醇酯比及相关风味物质因素的探讨   总被引:1,自引:1,他引:1  
啤酒中合理的醇酯比能提高酒体的协调性,饮用后有舒适愉快的感觉,不会出现上头现象。由于啤酒中高级醇和酯类物质的形成,受到众多因素的影响,有酵母菌种、发酵温度、酵母接种量、麦汁组成、麦汁通风和接种温度等。而在降低醇的同时,酯含量也会降低,提高酯含量,醇的含量也会随着提高;同时还会导致相关风味物质的变化。这里所说的相关风味物质是指啤酒中总高级醇、总酯、乙醛和DMS四类风味物质。本文通过试验来摸索影响成品酒醇酯比及相关风味物质变化的主要因素,从而合理控制成品酒醇酯比及相关风味物质含量,以达到提高啤酒质量目的。  相似文献   

4.
黄会荣  钟雷 《啤酒科技》2003,(10):47-47
麦汁冷却时需要充氧,如果通氧不足,影响酵母的繁殖和发酵,如通氧过度,发酵太旺盛、高级醇、乙醛等付产物增多,影响成品啤酒风味。在麦汁管道上按装在线溶解氧检测仪就很好地解决了这一问题。下面就在线溶解氧检测仪的安装及维护作一介绍。  相似文献   

5.
啤酒生产过程中高级醇形成因素及控制   总被引:2,自引:0,他引:2  
高级醇是啤酒生产发酵过程形成的,目前可检出的高级醇有30多种.啤酒中高级醇的生成途径主要有氨基酸、α-酮酸途径和糖类物质合成高级醇途径.高级醇的生成与麦汁发酵过程的pH值、α-氨基氮含量、麦汁充氧量、麦汁浓度、发酵强度、酵母菌种及其接种量等因素有关,控制麦汁α-氨基氮含量、可发酵性糖、麦汁充氧量、发酵工艺条件、乙醛含量、酵母菌种及其接种量可有效控制啤酒中的高级醇含量.  相似文献   

6.
赵英 《啤酒科技》2014,(4):59-67
通过应用较高接种比例的方法可以提高发酵过程的生产效率。其次是使用高浓酿造已经成为一种标准的提高生产能力的措施,但这两种工艺会对酵母代谢产生影响。在本研究中,我们组合了高浓和高酵母细胞密度的发酵,然后评估其对酵母生理和最终啤酒风味的影响,另外,试图通过优化麦汁的游离氨基氮含量来降低快速发酵的总联二酮产生量。较高的麦汁浓度导致酵母活力的下降,这可以从压力相关基因表达的增加和海藻糖含量较高来看出;更为严重的是可发酵性糖的种类及数量差异也会对酵母发酵性能和风味产生影响。麦汁中含有较高浓度的蔗糖会刺激氨基酸的吸收、酵母增殖、肝糖形成、海藻糖的重复利用、乙基酯的合成以及总联二酮的还原速度等。酵母在高浓度蔗糖的环境中较其他高浓麦汁会面临更大的渗透压影响。尽管将蔗糖和麦芽糖相比,对ATF1的表达有促进作用,但乙酸酯的生成显著下降。考虑蔗糖对酵母性能的负面作用,避免使用高浓度的这些糖类是明智的,我们采用了一种蔗糖和麦芽糖复合糖浆作为提高麦汁浓度的方法。  相似文献   

7.
以啤酒酵母S-6为实验菌株,研究了主发酵温度和原麦汁浓度对啤酒发酵的残糖、酒精度、风味物质和絮凝性等性能指标的影响。结果表明,原麦汁浓度一定时,主发酵温度对高级醇和乙酸酯的含量影响较大,主发酵温度由10 ℃提高至16 ℃时,高级醇含量提高了10%~20%,乙酸酯含量提高了8%~16%,但CO2累积质量损失、残糖、酒精度和絮凝性基本不受温度的影响;主发酵温度一定时,原麦汁浓度对酵母絮凝性影响较大,原麦汁浓度越高,酵母絮凝性越低,将高浓(18 °Bx)发酵液稀释50%至常浓(12 °Bx),残糖、酒精度和高级醇的含量与常浓发酵液基本相同。该研究为选育高温高浓发酵低产高级醇同时强絮凝性酵母菌株提供了重要依据。  相似文献   

8.
李强 《啤酒科技》2010,(8):50-51
目前许多啤酒厂使用高浓酿造后稀释工艺。我公司技改后的新设备在生产11度、12度麦汁时麦汁沉淀效果基本正常,发酵也正常;而生产14度麦汁时沉淀效果不理想,尤其是09年3月开始生产高浓麦汁后,车间反映麦汁沉淀效果差,沉淀物堆积不紧密,发酵反映麦汁到发酵的视镜中混浊物较多,麦汁满罐时从锥罐取样阀取出样品残渣占80%左右,发酵罐排渣量大,影响酵母回收,酵母泥颜色发黄褐色,滤酒困难,酒损偏高;另外从检测指标看糖化苦味值正常,而发酵苦味值衰减量大,清酒和成品苦味值均下降。  相似文献   

9.
由于淡爽型啤酒酿造的需要,辅料的添加比例不断增加。高辅料比生产工艺的采用无疑可降低酿造成本,但会使发酵麦汁组成发生较大变化,它降低了酵母增殖所必需的氨基酸、生物素以及保持发酵酶活性所必需的无机离子,结果导致发酵过程中酵母细胞密度降低,双乙酰峰值升高,酵母双乙酰还原能力减弱,甚至影响发酵速度。为解决上述发酵过程中的问题,改善麦汁的组成及啤酒发酵中酵母的营养状况,在发酵过程中添加一定量的酵母营养盐是一个非常有效且简便的方法。结果证实酵母营养盐的添加在高辅料比和添加各种糖浆的啤酒生产工艺中对酵母增殖、双乙酰峰值降低、双乙酰还原以及高级醇的形成等方面效果均良好。另外,还可使其酵母使用代数得以增加,对成品啤酒的质量不会产生不良影响。  相似文献   

10.
刘欢 《啤酒科技》2011,(9):52-52
在麦汁的组成中,葡萄糖含量是其中一个较为主要的参数。提高麦汁中葡萄糖含量,可以改变发酵过程的降糖曲线。起发迅速,会抑制麦芽糖的代谢和酵母繁殖,进而乙酸将和氨基酸代谢过程中产生的高级醇结合生成酯类,这样生产出来的啤酒具有香气浓,口感厚重的特点,适合生产小麦啤酒或者高浓稀释的工艺。在一定程度上解决了因高比例稀释而带来成品啤酒口感淡薄的问题。  相似文献   

11.
为探究麦汁中氨基酸在啤酒酿造中的作用,研究了麦汁中4种关键氨基酸(谷氨酸、脯氨酸、缬氨酸和赖氨酸)对酵母发酵性能的影响。以工业Lager酵母(Saccharomyces pastorianus TT-1)为研究对象,通过关键氨基酸添加的发酵实验,在合成培养基中对关键氨基酸在酵母增殖及风味物质代谢中的作用进行了分析,并进一步在工业生产麦汁中对其作用进行了验证。结果表明,谷氨酸和脯氨酸抑制酵母增殖;赖氨酸会促进酵母的增殖;缬氨酸会促进高级醇的生成。  相似文献   

12.
1高级醇形成的途径(略)2降低啤酒中高级醇含量的措施2.1选用优良的酵母菌种酵母菌种是影响高级醇含量的决定性因素,不同酵母菌种生成高级醇的种类和数量有很大差别。酵母接种量对高级醇的生成量也有一定的影响,当加大酵母接种量时,酵母的繁殖量减少,高级醇的生成量也相应减少,反之,则产生较多的高级醇。2.2合理控制麦汁组分高级醇的生成量随着麦汁浓度的升高而升高。当麦汁中α-氨基酸含量对低时,酵母将通过合成代谢途径生成自身所需的氨基酸,形成较多  相似文献   

13.
刘春凤  李崎 《啤酒科技》2007,(9):59-61,64
用贮藏酵母研究了接种量对高浓麦汁发酵及风味物质生成的影响。通过总糖、酵母生长对发酵性能的跟踪测试,分析发酵结束时高级醇、酯和羰基化合物的含量,对挥发性化合物进行评价。在较高的接种水平下,可以得到较高的发酵速率和酵母数;随接种量增加,2-甲基-1-丁醇,3-甲基-1-丁醇和乙酸异戊酯含量降低,而2-甲基-1-丙醇含量升高。较低的接种量会导致双乙酰和2,3-戊二酮的生成。  相似文献   

14.
在发酵过程中,蜡质高粱麦汁α-氨基氮及其发酵液中的高级醇含量,可以通过向麦汁中接种普通酵母或接种用酵母-麦芽培养基培养的酵母来进行.控制上蜡质高梁生产的麦汁与普通麦汁的α-氨基氮含量相近。发酵罐顶空的氧浓度由发酵初期的20%。经72小时发酵后,下降到不足1%,这表明:发酵环境逐渐由有氧转变为无氧。两种麦汁产生丙醇,异丁醇,戊醇以及异戊醇所消耗的α-氨基氮量也相近。发酵时间超过144小时后,丙醇,异丁醇,戊醇以及异戊醇的含量变化趋势也相同,异丁醇含量最低。向麦汁中接种用麦汁培养的酵母或添加用酵母-麦芽培养基培养的酵母,分别经过24小时和36小时开始产生丙醇。最终的乙醇和高级醇含量控制在储藏啤酒的要求范围内,用大麦麦芽和蜡质高粱粉生产的麦汁不但可以为啤酒酵母提供充足的营养,而且可以和工业麦汁相比。目前,已经有使用提纯的蜡质高粱粉作为辅料生产储藏啤酒的实例。  相似文献   

15.
所谓高浓酿造就是指在麦汁制备时提高麦汁浓度,并且进行高浓麦汁的酵母发酵,待发酵液成熟以后,再根据成品啤酒对原麦汁浓度的要求,通过稀释设备实现成品啤酒的浓度控制。该方法不需增加大的生产设备投入就能实现产量的提高,可谓投资小见效快。高浓酿造技术能否成功应用,工艺的调整、过程的控制是关键。我认为在工艺过程中应注意以下几环节的调控。  相似文献   

16.
赵英  王海先 《啤酒科技》2003,(11):56-60
酵母增殖的麦汁浓度(OG)在7.5~17.5°P 范围时,随 OG 的增加会引起细胞体积的变化。这些变化可应用图象分析技术对单一细胞体积进行测定。ale 和 lager 酵母单一细胞体积的均值随 OG 增加,达到17.5°P 时,体积会增加30%。酵母于高浓麦汁(17.5°P)中增殖,及其后来于高浓麦汁中发酵,对其质量有不利的影响。对于标准的 ale 酵母分别于7.5、12.5和17.5°P 的麦汁中增殖,于17.5°P 的麦汁进行发酵,发酵结束的酵母活性分别为93、90和85%,而同样对于标准的 lager 酵母发酵结束时活性分别为98、95和89%。对于 ale 和 lager 酵母同样应用高于12.5°P 的麦汁增殖,再于高浓麦汁中发酵,发酵结束的酵母活性均不超过90%。  相似文献   

17.
啤酒中高级醇的控制   总被引:8,自引:4,他引:8  
高级醇是酵母发酵主要副产物 ,主要有正丙醇、正丁醇、异丁醇、正戊醇、异戊醇等 ,可由发酵过程中的降解代谢和合成代谢生成。控制高级醇含量的措施有 :①选用产高级醇含量低的酵母菌株 ;②选用蛋白质溶解良好的麦芽 ;③调整工艺 ,控制麦汁含量6.0×10-6~8.0×10-6,降低主发酵温度 ;④控制糖化麦汁pH在5.2~5.4之间。(孙悟)  相似文献   

18.
殷亚军  杨兵于 《啤酒科技》2005,(11):42-42,44
影响发酵液pH值的因素主要有麦汁缓冲物质、麦汁充氧量、酵母添加量、发酵温度、酵母菌种。正常情况下,冷麦汁pH5.2-5.6,随着发酵的进行,产生二氧化碳和有机酸,同时也由于磷酸盐缓冲物质减少,pH值下降至4.1-4、4。本文重点叙述了冷麦汁充氧量及酵母加量对发酵液pH的影响程度。  相似文献   

19.
啤酒发酵过程中的溶解氧含量控制是影响啤酒代谢副产物的重要环节。在麦汁冷却过程中,充入无菌空气,控制溶解氧含量分别为6mg/L,8mg/L,10mg/L和12mg/L,10℃进行主酵,在控制其他参数一致的基础上,对整个发酵过程跟踪检测,考察酵母增殖情况、降糖情况、双乙酰含量、高级醇含量等。结果表明,在麦汁冷却过程中,控制8~10mg/L的溶解氧含量,可以得到较适含量的啤酒酵母代谢副产物。  相似文献   

20.
余晓红 《酿酒科技》2003,(5):66-67,70
麦汁中α—氨基氮是影响啤酒中高级醇、双乙酰含量和啤酒质量的关键因素。通过不同的α—AN含量的麦汁对酵母生长、pH变化、外观糖度变化、α—氨基氮含量变化、双乙酰含量变化、高级醇含量变化的影响分析,结果表明,将麦汁中的α—AN含量控制在167mg/L时比较适当,发酵产生的高级醇和双乙酰比较适中,啤酒的pH比较适当;可添加糖化辅料,降低生产成本。扩大生产时控制麦汁中α—AN含量在160—180mg/L,可酿造出口味比较协调的优质啤酒。(孙悟)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号