首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在初始温度为400 K、不同的初始压力(0.1 MPa、0.4 MPa)、氢气比例(70%、80%)和当量比(0.7~1.4)条件下进行氢气-乙醇预混燃烧实验,使用高速纹影技术记录火焰传播图像。对氢气-乙醇球形膨胀火焰中的层流燃烧速度(LBV)进行实验研究,发现LBV随着氢气比例的增加而增加,压力升高却有着负影响。对火焰发展不同阶段的火焰形貌进行了研究。当火焰表面的大裂纹分裂出现小裂纹并且导致新细胞再生时,火焰变得不稳定。通过热膨胀比、火焰厚度和刘易斯数等参数考察了流体动力学效应和热扩散效应对火焰固有不稳定性的影响。结果表明,流体动力不稳定性随着压力的增加而增加,热扩散不稳定性对压力变化的敏感性较低。此外,增加氢气比例或初始压力会导致火焰更早遭受不稳定。  相似文献   

2.
氢气是一种高效的添加剂,可以改善生物质燃料的层流燃烧特性。为研究氢气对乙醇-空气预混层流火焰燃烧特性的影响,利用定容燃烧弹结合高速纹影摄像技术,系统研究了初始温度为400 K,初始压力为0.1 MPa和0.4 MPa,氢气含量为0%、10%、30%、50%、70%和90%,当量比为0.7 ~ 1.4时的氢气-乙醇-空气混合燃料的层流燃烧速度(LBV)、火焰厚度和马克斯坦长度等参数,并采用辐射校正公式使LBV更加精准。通过数值仿真构建预混火焰模型,与实验结果进行对比。结果表明,氢气比例的增加可以提高混合燃料的层流燃烧速度。当氢气比例小于50%时,LBV随氢气比例的增加线性增长。而当氢气比例大于50%,LBV随氢气的增加呈指数增长。初始压力的上升虽然降低了LBV,但提高了LBV的增长率。此外,随着氢气比例和初始压力的增加,火焰厚度减小,马克斯坦长度降低,火焰的不稳定性增强。  相似文献   

3.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

4.
在定容燃烧弹内研究了不同初始压力下天然气-氢气-空气混合气的火焰传播规律,得到了不同掺氢比例和初始压力下,不同燃空当量比时混合气的层流燃烧速率,并分析了火焰的稳定性及其影响因素.研究结果表明,随着天然气中掺氢比例的增加,混合气的燃烧速率增加,且增长速率逐渐加快,而马克斯坦长度值则随着掺氢比例的增加而减小,即火焰的稳定性下降.不同初始压力下,随着燃空当量比的增加,马克斯坦长度值在不同掺氢比例下均增加,显示火焰的稳定性增加.无拉伸层流燃烧速率随着初始压力的增加略有减小,且在化学当量比附近,变化的初始压力和掺氢比对无拉伸层流燃烧速率的影响最为明显.  相似文献   

5.
为获得氮气稀释气对天然气燃烧特性的影响规律,在定容燃烧反应器中对不同当量比与初始压力下天然气的火焰传播特性、燃烧稳定性及燃烧特性进行了试验测试,并分析了氮气稀释度对天然气火焰传播特性、燃烧稳定性及燃烧特性的影响规律。研究结果表明:随着初始压力与氮气稀释度的升高,火焰前锋面将出现细小裂纹,火核逐渐向定容燃烧反应器上部漂移,火焰稳定性变差;随着初始压力的提高,马克斯坦长度明显变短,火焰稳定性变差,无拉伸火焰传播速度与层流燃烧速度明显降低,但最大燃烧压力显著升高。随着当量比的提高,层流燃烧速度与最大燃烧压力出现先增加后降低的趋势,两者的最大值出现在当量比为1.0时。马克斯坦长度随氮气稀释度的增加逐渐变短,表明火焰逐渐趋于不稳定;同时,无拉伸火焰传播速度、层流燃烧速度与最大燃烧压力随氮气稀释度的增加显著降低。  相似文献   

6.
在定容燃烧弹内研究了初始压力为0.5 MPa时,不同初始温度和燃空当量比下二甲醚-空气混合气预混层流火焰的层流燃烧速率和马克斯坦长度,分析了火焰拉伸对火焰传播速率的影响.基于容弹燃烧的双区模型计算了预混层流燃烧的燃烧特性参数.结果表明:随着初始温度的增加,二甲醚-空气预混合气的无拉伸火焰传播速率和无拉伸层流燃烧率增加;对于给定的初始温度,在化学当量比偏浓混合气一侧存在一个层流燃烧速度的峰值;随初始温度和当最比增加,马克斯坦长度值减小,火焰前锋面的不稳定性增加;最大燃烧压力随初始温度的增加而下降,压力升高率随初始温度的增加而降低.  相似文献   

7.
在定容燃烧弹内利用高速纹影摄像法系统地研究了不同初始压力、不同初始温度和不同燃空当量比下二乙醚-空气预混合气的层流燃烧特性。利用球形发展火焰分析得到了不同初始压力、不同初始温度和不同燃空当量比下二乙醚-空气预混合气的无拉伸层流火焰燃烧速率、马克斯坦长度等层流燃烧参数。研究结果表明:无拉伸层流火焰燃烧速率随初始温度的增加而增加,随初始压力的增加而降低;马克斯坦长度随着初始温度的增加而减小,随初始压力的增加而减小,随当量比的增加而减小,表明火焰前锋面不稳定性随初始温度和初始压力的增加而增加,随混合气浓度的增加而增加。基于试验数据获得了二乙醚-空气预混合气无拉伸层流燃烧速率的关系式。  相似文献   

8.
甲醇-空气-氮气混合气预混球型火焰的试验研究   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同燃空当最比、初始压力、初始温度和气体稀释度下甲醇-空气-氮气混合气预混球型火焰的发展特性以及3种火焰锋面的不稳定性.获得了不同初始状态下的层流燃烧速度、质量燃烧流量和马克斯坦长度.高的初始压力时,火焰锋面生成的裂纹发展并形成细胞状结构.稀混合气时,浮力和电极的冷却作用对火焰的发展有重要影响.当量比在化学计量比附近时,随着初始温度的提高,流体动力学不稳定性被抑制.随着初始压力的增加,流体动力学不稳定性增强.稀释气的加入抑制了火焰锋面流体动力学的不稳定性.  相似文献   

9.
二甲醚-空气混合气层流燃烧速度的测定   总被引:1,自引:0,他引:1  
在定容燃烧弹中利用高速纹影摄像法系统地研究了不同燃空当量比和初始压力下二甲醚-空气混合气的层流燃烧特性.利用球形扩散火焰理论分析纹影照片,获得了不同初始压力和当量比下的二甲醚-空气混合气层流燃烧速率.结果表明:随着初始压力的增大,层流燃烧速率显著减小,层流燃烧速率的峰值向浓混合气侧偏移.拉伸层流燃烧速率随拉伸率的增加而增加,拉伸层流质量燃烧速率随拉伸率的增加而减小.根据球形扩散火焰模型得到混合气的马克斯坦长度值表明:在各初始压力下,随着当量比的增加,二甲醚-空气混合气的马克斯坦长度值逐渐减小,火焰前锋面的不稳定性增加.  相似文献   

10.
采用高速纹影摄像系统和定容燃烧弹对不同初始压力下(0.1~0.5,MPa)氢气燃烧的不稳定性和自加速性进行了实验研究,分析了火焰胞状不稳定性的发展过程和变化规律,分别对比了火焰轮廓及火焰传播速度的自加速表现.研究结果表明,在火焰没有达到一开始就完全胞状化之前,随初始压力的增大,氢气燃烧的不稳定性增强;胞状不稳定的火焰会出现自加速,而稳定火焰不会出现自加速;火焰的加速特性在均布的胞状结构形成后便会出现,其始点与胞状不稳定的火焰临界半径一致,始点过后,火焰的传播速度(或燃烧速度)随着燃烧半径的增加(或燃烧时间的增加)而不断地自加速.  相似文献   

11.
甲烷/乙烷-空气预混层流燃烧特性试验和数值模拟研究   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同初始压力、初始温度、当量比和甲烷含量条件下甲烷/乙烷-空气预混层流燃烧特性,得到了马克斯坦常数和层流火焰燃烧速率等数据,并进行了化学特性分析。研究结果表明:层流火焰燃烧速率随初始压力的增加而减小,随着初始温度的增加而增加,最大值在当量比约为1.1取得,甲烷含量增加层流火焰速率略微减小;马克斯坦常数随初始压力的增加而减小,随着当量比的增加而增加;数值模拟得到的一维自由传播火焰的层流火焰速率与试验结果吻合良好。  相似文献   

12.
初始压力对天然气-氢气-空气混合气火焰传播特性的影响   总被引:2,自引:0,他引:2  
使用定容燃烧弹研究了不同初始压力下天然气-氢气-空气混合气的火焰传播规律,得到了初始压力、掺氢比和燃空当量比对无拉伸层流燃烧速率、质量燃烧流量的影响,结合高速纹影图片分析了影响火焰稳定性的因素(马克斯坦长度、火焰面两侧密度比和火焰厚度).结果表明,掺氢天然气无拉伸层流燃烧速率以及火焰的不稳定性受掺氢比、初始压力和燃空当量比的综合影响.结合高速纹影图片,得出火焰的稳定性会随初始压力的增加而减小;在相同的燃空当量比和掺氢比下,初始压力对密度比的影响不大,但是对火焰厚度的影响比较明显.  相似文献   

13.
利用定容燃烧弹和高速纹影摄像手段研究了不同初始压力、初始温度、气体稀释度和燃空当量比下乙醇-空气-稀释气预混层流燃烧特性的基础特征参数,如绝热火焰温度、层流燃烧速度、层流燃烧质量流量、层流燃烧火焰厚度和已燃气体Markstein长度。研究结果表明:在给定初始压力、初始温度和气体稀释度的情况下,绝热火焰温度、质量燃烧流量和层流燃烧速度的最大值均出现在当量比1.0~1.1,层流火焰厚度在当量比1.1处取得最小值;已燃气体Markstein长度随当量比的增加呈下降趋势;在给定当量比条件下,绝热火焰温度随初始压力、初始温度的增加而增加,随氮气稀释度的增加而降低;层流燃烧速度随初始压力和氮气稀释度增加而降低,随初始温度增加而增加;层流质量燃烧流量随初始压力和初始温度的增加而增加;随氮气稀释度增加而减小;层流火焰厚度和已燃气体Markstein长度随初始压力和初始温度的增加而减小,随氮气稀释度的增加而增加。  相似文献   

14.
邓玄亮  孔祥领  焦永丰  王平 《节能》2022,(12):38-41
为了研究某型号燃气轮机天然气燃料中掺混不同比例氢气的燃烧特性,采用Chemkin软件的PREMIX模型对一维层流预混火焰、GRI-Mech 3.0机理进行数值计算,分析不同比例天然气掺氢混合燃料的绝热火焰温度、层流预混火焰传播速度和点火延迟时间等燃烧特性参数及其随当量比、压力和温度的变化规律,得到不同比例掺氢燃料的燃烧特性。结果显示:随着掺氢比例的提高,燃料燃烧特性参数的变化速率加快,氢气含量低于20%时,参数变化相对缓和,设计鲁棒性较好的燃烧室可以直接更换燃料;氢气含量为20%~60%时,参数变化程度加剧,需要进行燃料适应性改造;氢气含量超过60%时,需要进行综合评估;燃料氢气含量从80%提高至纯氢将面临巨大挑战。  相似文献   

15.
试验采用高速纹影系统和压力传感器对甲烷-空气预混气体定容燃烧特性进行了研究,分析了不同初始压力对火焰传播特性的影响以及定容燃烧弹中压力的变化规律。试验结果表明:随着初始压力的增加,火焰的传播速度变化不大,并且有减小的趋势,当初始压力超过0.14 MPa后火焰的燃烧速度会发生突变而增大;初始压力的变化对定容燃烧弹中燃烧压力的影响十分显著,当初始压力为0.10 MPa时,最大燃烧压力Pmax=0.703MPa;而在初始压力为0.16 MPa时,最大燃烧压力Pmax=1.42 MPa;随着初始压力的增加,火焰变得愈发的不稳定。  相似文献   

16.
为了获得生物燃气及生物燃气掺氢的燃烧特性,文章通过高速纹影系统在定容燃烧弹中研究了CH_4/CO_2在不同CO_2比例、不同当量比、不同初始压力以及不同掺氢比下的层流燃烧特性。研究结果表明:生物燃气的层流燃烧速度随着CO_2掺混比例的增大而降低,随着初始压力的升高而降低;生物燃气掺氢后的层流燃烧速度随着掺氢比的增大而增大;对于生物燃气及生物燃气掺氢而言,火焰的稳定性随着初始压力及掺氢比的增大而降低,随着当量比增大而增大,生物燃气中CO_2的比例对火焰稳定性的影响不大。  相似文献   

17.
燃烧的基本特性如抬举高度、层流燃烧速度以及射流出口速度等与燃烧装置的设计有关。对纯氢气火焰、氢气/甲烷、氢气/甲烷/CO2扩散火焰的抬举高度和射流出口速度进行了实验研究,并对层流燃烧速度进行了分析。研究认为,抬举高度随着射流出口速度的增加而线性增加。层流燃烧速度随氢气体积分数的增加呈指数增长,特别当氢气体积分数40%以后,层流燃烧速度随氢气体积分数显著增加。  相似文献   

18.
采用定容燃烧弹-纹影系统,将H_2与CO按体积比为2∶1的混合气来模拟真实甲醇裂解气,进行了初始温度为343,K、初始压力为0.3,MPa下的甲烷-甲醇裂解气-空气预混燃烧试验,研究了不同当量比(0.6~1.8)和不同添加比例(20%,~80%,)的甲醇裂解气(其中V(H_2)∶V(CO)=2∶1)对甲烷-空气层流火焰燃烧速度、马克斯坦长度、火焰胞状结构及其影响参数等层流燃烧特性的影响,并在相同条件下单独添加CO,探究CO在甲醇裂解气中的作用.结果表明:甲醇裂解气能提高混合气层流火焰燃烧速度,在整个当量比范围尤其是稀燃时加强火焰不稳定性,促进胞状结构的产生.CO也能提高燃烧速度,但提升幅度比甲醇裂解气小,而且只有在大比例添加且当量比为1.2附近时才对火焰胞状不稳定性产生明显促进作用,即甲醇裂解气中对甲烷层流燃烧速度和火焰稳定性起主要影响的成分为H_2.  相似文献   

19.
天然气/氢气燃烧特性研究   总被引:4,自引:0,他引:4  
在定容燃烧弹中研究了不同氢气掺混比例、燃空当量比和初始压力下的大然气/氢气混合气的燃烧特性,建立了适合用于容弹计算的准维双区模型。研究结果表明:在各种当量比和初始压力下,随着掺氢比例的增加,混合气的质量燃烧速率明显增加,燃烧持续期和火焰发展期娃著缩短。随着掺氢比例的增加,短的燃烧持续期所对应的当量比范围变宽,稀混合气和浓混合气条件下天然气掺氢对火焰发展期缩短的效果更明显。化学计量比附近(1.0—1.1)掺氢燃烧对燃烧最大压力值影响不大,浓混合气(燃空当量比大于1.1)和稀混合气燃烧时,随着掺氢比例的增加,最大燃烧压力值增加。  相似文献   

20.
基于定容燃烧弹,利用纹影法和球型火焰扩散法研究了不同燃空当量比、环境温度和环境压力下仲丁醇-空气预混层流燃烧速度.通过对仲丁醇-空气拉伸层流火焰传播速度与拉伸率之间关系的分析,获得了无拉伸火焰层流燃烧速度和马克斯坦长度.研究结果表明:随着环境压力的上升,仲丁醇-空气层流燃烧速度降低,马克斯坦长度降低,火焰不稳定性增加;随着环境温度的增加,无拉伸层流燃烧速度增加,马克斯坦长度减小,表明燃烧火焰不稳定性增加;随着燃空当量比的增加,马克斯坦长度减小,火焰不稳定性增加;燃空当量比Φ=1.1左右时,火焰传播速度和无拉伸层流燃烧速度达到最大值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号