首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
PURPOSE: In the search for a sensitive, accurate, and noninvasive technique for quantifying human tumor hypoxia, our laboratory has synthesized several potential radiodiagnostic agents. The purpose of this study was to assess and compare the hypoxic marking properties of both radioiodinated and Tc-99m labeled markers in appropriate test systems which can predict for in vivo activity. MATERIALS AND METHODS: Preclinical assessment of hypoxic marker specificity and sensitivity employed three laboratory assays with tumor cells in vitro and in vivo. Radiolabeled marker uptake and/or binding to whole EMT-6 tumor cells under extremely hypoxic and aerobic conditions was measured and their ratio defined hypoxia-specific factor (HSF). Marker specificity to hypoxic tumor tissue was estimated from its selective avidity to two rodent tumors in vivo, whose radiobiologic hypoxic fractions (HF) had been measured. The ratios of % injected dose/gram (%ID/g) of marker at various times in EMT-6 tumor tissue relative to that in the blood and muscle of scid mice were used to quantify hypoxia-specific activity. This tumor in this host exhibited an average radiobiologic HF of approximately 35%. As well, nuclear medicine images were acquired from R3327-AT (HF approximately =15%) and R3327-H (no measurable HF) prostate carcinomas growing in rats to distinguish between marker avidity due to hypoxia versus perfusion. RESULTS: The HSF for FC-103 and other iodinated markers were higher (5-40) than those for FC-306 and other Tc-99m labeled markers. The latter did not show hypoxia-specific uptake into cells in vitro. Qualitative differences were observed in the biodistribution and clearance kinetics of the iodinated azomycin nucleosides relative to the technetium chelates. The largest tumor/blood (T/B) and tumor/muscle (T/M) ratios were observed for compounds of the azomycin nucleoside class in EMT-6 tumor-bearing scid mice. These markers also showed a 3-4 x higher uptake into R3327-AT tumors relative to the well-perfused R3327-H tumors. While both FC-306 and CERETEC rapidly distributed at unique concentrations to different tissues, their avidity to EMT-6 and R3327-AT tumors did not correlate with tumor HF. CONCLUSIONS: The halogenated azomycin nucleosides with the lowest lipid/water partition coefficient values were found to yield the optimal hypoxia-specific signal in these animal tumors. Our Tc-99m-labeled azomycin chelates showed little or no hypoxia-specific uptake and had in vivo biodistribution and clearance kinetics similar to those of CERETEC, a perfusion agent with no known hypoxic binding activity.  相似文献   

2.
The presence of hypoxic cells in human tumors is thought to be one of the principal reasons for the failure of radiation therapy. Intensive laboratory and clinical efforts to overcome tumor hypoxia have focused on oxygenating, radiosensitizing or killing the maximally radioresistant fraction of tumor cells. This "hypoxic fraction" dominates the single-dose radiation response, irrespective of the oxygenation status of the remainder of the tumor cell population. However, at doses that are typical of those delivered in a daily radiotherapy protocol, we show that the tumor response is highly dependent upon the cells at oxygen levels intermediate between fully oxygenated and hypoxic (0.5-20 mm Hg). For most tumors, these cells are more important than the radiobiologically hypoxic cells in determining treatment outcome after 30 fractions of 2 Gy. We also show that under conditions of diffusion-limited hypoxia, the impact of full reoxygenation between fractions is much smaller than previously realized. Together, the results imply that tumor hypoxia plays a more significant role in determining the outcome of fractionated radiotherapy than previous measurements and assumptions of hypoxic fractions have indicated. Therefore, the concept of a hypoxic fraction in human tumors is less meaningful when pertaining to a fractionated radiotherapy regimen, and should not be expected to be useful for predicting tumor responses in the clinic. This implies the need to characterize tumor oxygenation in a manner that reflects the true oxygenation status of all the tumor cells, not just the ones most refractory to the effects of ionizing radiation. Furthermore, effective therapeutic agents must have the ability to specifically sensitize or kill those cells at intermediate levels of oxygen in addition to the radiobiologically hypoxic cells.  相似文献   

3.
BACKGROUND: To determine if hypoxia stimulates the proliferation of retinal microvessel endothelial cells in culture. METHODS: Bovine retinal microvessel endothelial cells were cultured in normoxic (95% air, 5% CO2) and hypoxic (2% O2, 5% CO2, 93% N2) conditions. Endothelial cells were identified by acetylated LDL and Factor VIII-related antigen immunocytochemical staining. Cells from passages three to eight were used in these experiments. Proliferation assays included cell counts by hemocytometer and autoradiographic analysis of incorporated 3H-thymidine (3H-TdR). RESULTS: At day 4, cell counts of endothelial cells in hypoxia showed a 133% increase over those grown in normoxic conditions (N = 25, P < 0.01). Cell counts per day for 5 days were 121-181% greater in hypoxia. Autoradiography of endothelial cells exposed to 3H-TdR and counted every 12 hours for 60 hours exhibited labeling indices 112-118% higher in hypoxic conditions (P < 0.0001). Endothelial cells cultured under hypoxic conditions were smaller and spindle-shaped, whereas those grown under normoxic conditions were larger and more polygonal. CONCLUSIONS: Hypoxia increases DNA synthesis and stimulates proliferation of retinal microvessel endothelial cells in vitro and induces alterations in morphology. These results may be relevant to microvessel angiogenesis, which occurs in vivo under ischemic conditions.  相似文献   

4.
PURPOSE: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. MATERIALS AND METHODS: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. RESULTS: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. CONCLUSION: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system.  相似文献   

5.
Hypoxia in human tumors is associated with poor prognosis, but the molecular mechanisms underlying this association are poorly understood. One possibility is that hypoxia is linked to malignant progression through vascular endothelial growth factor (VEGF) induction and the associated angiogenesis and metastasis. The present clinical study measures hypoxia and VEGF expression on a cell-by-cell basis in human squamous cell carcinomas to test the hypothesis that hypoxia and VEGF protein expression are coupled in human tumors. Eighteen patients with invasive squamous cell carcinoma of the uterine cervix and head and neck have been investigated by a quantitative image analysis of immunostained sections from their tumors. The hypoxia marker pimonidazole was used to measure tumor hypoxia, and a commercially available antibody was used to measure VEGF protein expression. A quantitative immunohistochemical comparison of hypoxia and VEGF protein expression revealed no correlation between the two factors.  相似文献   

6.
This study investigated the in vitro and in vivo radiation response of tumor cells transfected with human manganese superoxide dismutase (MnSOD) cDNA. A major objective was to test the potential tumor suppressive effect of MnSOD in vivo. Tumor cells studied were an in vitro line derived from a murine spontaneous fibrosarcoma, FSa-II, which expressed an undetectable MnSOD activity. These cells were transfected with pSV2-NEO plasmid (NEO line) or cotransfected with MnSOD plasmid plus pSV2-NEO plasmid (SOD lines) as described previously. The cell lines used were SOD-L and SOD-H, which expressed, respectively, low and high MnSOD activities after transfection, and NEO and parental FSa-II controls. Both SOD-L and SOD-H cell lines were slightly more resistant to ionizing radiation than were the two control cell lines when irradiated in vitro in the presence of oxygen. The dose-modifying factors calculated at the survival level of 0.01 were 1.13 and 1.15 for the SOD-L and SOD-H cells, respectively. To investigate potential tumor suppressive effects, animal tumors of 4 mm diameter were irradiated in vivo under hypoxic conditions, and the radiation dose to control one-half of the irradiated tumors (TCD50) was determined for each tumor. The TCD50S obtained on the basis of the tumor control rate in 120 days after irradiation were substantially lower for the SOD-H and SOD-L tumors compared to the NEO tumors. They were 22.9, 28.6, and 47.5 Gy for SOD-H, SOD-L and NEO tumors, respectively. To analyze these data, survival curves were obtained for hypoxic cells by irradiating NEO and SOD-H tumors under hypoxic conditions in vivo and assaying in vitro. Analysis of these curves suggests that the decrease in the TCD50S of SOD tumors is attributable to the reduced tumorigenicity in these tumors. The hypoxic cell survival curves also showed that SOD did not protect cells from radiation in the absence of oxygen. Electron microscopy showed no morphological differences between these cells. These results suggest that the fraction of tumorigenic cells could be reduced by expression of MnSOD, resulting in a substantial decrease in the TCD50.  相似文献   

7.
Microenvironmental conditions within solid tumors can have marked effects on the growth of the tumors and their response to therapies. The disorganized growth of tumors and their attendant vascular systems tends to result in areas of the tumors that are deficient in oxygen (hypoxic). Cells within these hypoxic areas are more resistant to conventional therapies such as radiation and chemotherapy. Here, we examine the hypoxic state of EMT6 mouse mammary tumors and the location of host cells within the different areas of the tumors to determine whether such microenvironmental conditions might also affect their ability to be recognized by the immune system. Hypoxia within tumors was quantified by flow cytometry and visualized by immunohistochemistry using a monoclonal antibody (ELK3-51) against cellular adducts of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetam ide (EF5), a nitroimidazole compound that binds selectively to hypoxic cells. Thy-1+ cells, quantified using a monoclonal antibody, were found only in the well-oxygenated areas. The location of these Thy-1+ cells was also examined in EMT6 tumors that had been transfected with the gene for interleukin-2 (IL-2) because these tumors contain greatly increased numbers of host cells. Surprisingly, we found that IL-2-transfected tumors had significantly decreased hypoxia compared to parental tumors. Furthermore, using the fluorescent dye Hoechst 33342, an in vivo marker of perfused vessels, combined with immunochemical staining of PECAM-1 (CD31) as a marker of tumor vasculature, we found increased vascularization in the IL-2-transfected tumors. Thus, expression of IL-2 at the site of tumor growth may enhance tumor immunity not only by inducing the generation of tumor-reactive CTLs but also by allowing increased infiltration of activated T cells into the tumors.  相似文献   

8.
C3H/He and Balb/c mice bearing SCC VII and EMT6/KU tumors, respectively, received continuous administration of 5-bromo-2'-deoxyuridine (BrdU) for 5 days using implanted mini-osmotic pumps to label all proliferating (P) cells. Nicotinamide was administered intraperitoneally before cisplatin injection and/or tumors were locally heated at 40 degrees C for 60 min immediately after cisplatin injection. The tumors were then excised, minced and trypsinized. The tumor cell suspensions were incubated with cytochalasin-B (a cytokinesis-blocker), and the micronucleus (MN) frequency in cells without BrdU labeling (quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. The MN frequency in total (P+Q) tumor cells was determined from tumors that had not been pretreated with BrdU labeling. The sensitivity to cisplatin was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). In both tumor systems, the MN frequency in Q cells was lower than that in the total cell population. Nicotinamide treatment elevated the MN frequency in total SCC VII cells. Mild heating raised the MN frequency more markedly in Q cells than in total cells. The combination of nicotinamide and mild heat treatment increased the MN frequency more markedly than either treatment alone. In total SCC VII cells, nicotinamide increased 195mPt-cisplatin uptake. Mild heating elevated 195mPt-cisplatin uptake in total EMT6/KU cells. Cisplatin-sensitivity of Q cells was lower than that of total cells in both tumor systems. Nicotinamide sensitized tumor cells including a large acutely hypoxic fraction, such as those of SCC VII tumors, through inhibition of the fluctuations in tumor blood flow. Tumor cells including a large chronically hypoxic fraction such as Q cells were thought to be sensitized by mild heating through an increase in tumor blood flow.  相似文献   

9.
Although hypoxic cells are generally resistant to radiation and chemical therapies designed to halt the spread of neoplastic disease, few investigations have been carried out with regard to the molecular mechanisms responsible for this phenomenon. Here, we report of the development of an in vitro model system with which to study the molecular mechanisms involved in the proliferation and invasion of human ovarian carcinoma cells under hypoxia. Results from [(3)]thymidine incorporation experiments indicate that hypoxia triggers cessation of ovarian carcinoma cell DNA synthesis. Flow cytometry analysis of cellular DNA content for hypoxic cultures revealed that cell cycle progression was arrested. This arrest was found to be reversible upon reoxygenation of the cultures. Concomitant with this growth arrest is hypophosphorylation of pRB and a reduction in cyclin A abundance, suggesting that hypoxia induces growth arrest by regulating the activities of these crucial cell cycle-regulatory proteins. In vitro invasion assays revealed that hypoxia has no appreciable effect on the invasive ability of these cells. Immunoblotting established that the detected proteolytic activity was due to the matrix metalloproteinase MMP-2, the M(r) 72,000 type IV collagenase that is most closely associated with the metastatic phenotype in vitro and in vivo. These data support the notion that populations of ovarian carcinoma cells are capable of surviving and invading extracellular matrix during hypoxic conditions and, after a more suitable oxygen environment is reached, giving rise to new cell colonies.  相似文献   

10.
PURPOSE: To investigate whether electrode measurements of tumor oxygenation obtained under a range of different treatment conditions designed to alter the degree of tumor hypoxia could be correlated with estimates of radiobiological hypoxia measured under the same conditions. METHODS AND MATERIALS: Experiments were performed in restrained, nonanesthetized, female C3H/He mice, which had approximately 0.5 g KHT sarcomas growing intramuscularly in the hind limbs. The treatments used to modify tumor oxygenation status included breathing gas mixtures of varying oxygen content, altering tumor blood flow, and shifting the hemoglobin oxygen dissociation curve. Radiobiological hypoxic fraction was estimated using the paired survival curve assay, while electrode measurements of tumor oxygenation were obtained with an Eppendorf histograph. RESULTS: With the selected manipulations it was possible to vary the radiobiological hypoxic fraction in the tumors from approximately 1 to approximately 100% of the total viable cell population. Furthermore, these changes in radiation response were directly reflected in the changes in tumor oxygenation measurements made with the Eppendorf histograph. CONCLUSION: These findings suggest that in the KHT tumor model the Eppendorf electrode measurements could predict the response of the tumors to radiation as determined by the proportion of hypoxic cells.  相似文献   

11.
A new gel electrophoresis method has been used to quantify hypoxic fraction in human tumors. Radiation-induced DNA damage was measured in individual tumor cells, where the radiobiologically hypoxic cells were observed as a subpopulation showing a 3-fold reduction in DNA strand breaks. Patients receiving palliative radiotherapy for breast cancers were given a single dose of 5-10 Gy, and a fine needle aspiration biopsy was taken immediately after irradiation. Hypoxic cells were detected in seven of eight tumors. In four tumors, bivariate analyses of DNA content versus DNA damage to individual cells allowed distinction between the response of diploid normal cells and aneuploid tumor cells. These early results indicate that "comet assay" shows considerable promise for resolving the extent and significance of hypoxia in human tumors.  相似文献   

12.
The tumor microenvironment is characterized by regions of fluctuating hypoxia, low pH, and nutrient deprivation. To determine the genetic consequences of growth under these conditions, we used a tumorigenic cell line carrying a recoverable, chromosomally based lambda phage shuttle vector designed to report mutations without the need for genetic selection of mutant cells. The cells were grown in parallel either in culture or as tumors in nude mice. The frequency of mutations arising in cells within the tumors was found to be 5-fold higher than that in otherwise identical cells grown in culture. A distinct pattern of mutation was also seen, with significantly more deletions and transversions in the tumors than in the cell cultures. Furthermore, exposure of the cultured cells to hypoxia produced an elevated mutation frequency and a mutation pattern similar to that seen in the tumors. These results indicate that the conditions within solid tumors are mutagenic and suggest that a fundamental mechanism of tumor progression in vivo is genetic instability induced by the tumor microenvironment.  相似文献   

13.
Tumor hypoxia and high levels of expression of the urokinase-type plasminogen activator (uPA) receptor (uPAR) represent a poor clinical outcome for patients with various cancers. Here, we examined the effect of hypoxia on in vitro invasion of extracellular matrix and uPAR expression by human carcinoma cells. Compared with culture under 20% O2, culture for up to 24 hr under 1% or 4% O2 resulted in increased cell surface uPAR. However, the highest uPAR levels were observed in cells cultured under 1% O2. Culture of MDA-MB-231 breast carcinoma cells under hypoxia also resulted in increased uPAR mRNA levels. Furthermore, incubation with cobalt chloride or with an iron chelator also resulted in elevated uPAR expression, while presence of 30% carbon monoxide in the hypoxic atmosphere reduced the hypoxia-mediated uPAR mRNA upregulation. Increased uPAR expression was paralleled by higher cell-associated uPA levels and lower levels of secreted uPA as determined by gel zymography performed on cell extracts and culture-conditioned media. In addition, the in vitro invasiveness of MDA-MB-231 breast carcinoma cells was significantly higher when the invasion assay was performed under hypoxic conditions. This effect of hypoxia on invasion was abrogated by including in the assay a monoclonal, function-blocking anti-u PAR antibody or by the presence of 30% carbon monoxide in the hypoxic atmosphere. Our findings indicate that hypoxia stimulates carcinoma cell invasiveness by upregulating uPAR expression on the cell surface through a mechanism that requires a putative heme protein. Through a similar mechanism, hypoxia may stimulate tumor invasion and metastasis in vivo.  相似文献   

14.
Studies in animal models and humans suggest that myocardium may adapt to chronic or intermittent prolonged episodes of reduced coronary perfusion. Stable maintenance of partial flow reduction is difficult to achieve in experimental models; thus, in vitro cellular models may be useful for establishing the mechanisms of adaptation. Since moderate hypoxia is likely to be an important component of the low-flow state, isolated adult rat cardiac myocytes were exposed to 1% O2 for 48 hours to study chronic hypoxic adaptation. Hypoxic culture did not reduce cell viability relative to normoxic controls but did enhance glucose utilization and lactate production, which is consistent with an anaerobic pattern of metabolism. Lactate production remained transiently increased after restoration of normal O2 tension. Myocyte contractility was reduced (video-edge analysis), as was the amplitude of the intracellular Ca2+ transient (indo 1 fluorescence) in hypoxic cells. Relaxation was slowed and was accompanied by a slowed decay of the Ca2+ transient. These changes were not due to alterations in the action potential. Tolerance to subsequent acute severe hypoxia occurred in cells cultured in 1% O2 and was manifested as a delay in the time to full ATP-depletion rigor contracture during severe hypoxia and enhanced morphological recovery of myocytes at reoxygenation. The latter was still seen after normalization of the data for the prolonged time to rigor, suggesting a multifactorial basis for tolerance. An intervening period of normoxic exposure before subsequent acute severe hypoxia did not result in loss of tolerance but rather increased the delay to subsequent ATP depletion rigor. Cellular glycogen was preserved during chronic hypoxic exposure and increased after the restoration of normal O2 tension. As mitochondrial cytochromes should be fully oxygenated at levels well below 1% O2, hypoxic adaptation may be mediated by a low-affinity O2-sensing process. Thus, adaptations that occur during prolonged periods of moderate hypoxia are proposed to poise the myocyte in a better position to tolerate impending episodes of severe O2 deprivation.  相似文献   

15.
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.  相似文献   

16.
Increased capacity for glycolytic metabolism is a well-known characteristic of neoplastic cells. Because lactic acid is the end product of glycolysis, in vivo MRS measurements of tumor lactate concentration ([lac]t) may provide valuable information about tumor metabolism, which will aid the development of therapies and the clinical diagnosis and treatment of tumors. In the present study, several hemodynamic and histologic parameters were evaluated with respect to their influence on [lac]t. Pronounced differences in [lac]t in two distinct populations of tumors suggested a putative perfusion threshold. Above this threshold, [lac]t was independent of hemodynamic and histologic factors including tumor blood flow (measured using MRS and the method of D2O washout), extent of necrosis and inflammatory cell infiltrate. Thus, for most tumors, [lac]t was not determined by any one single factor such as hypoxia, venous clearance, glucose supply, extent of necrosis or degree of inflammatory cell infiltrate. Rather, [lac]t may be equilibrated, at least in part, by an interplay of forces involving hemodynamics and substrate supply. In general, the data are consistent with the hypothesis that elevated lactate in most tumors is related to the high glycolytic activity of adequately perfused, viable neoplastic cells.  相似文献   

17.
We have previously demonstrated that interleukin-2 (IL-2) receptors, IL-2 protein, and mRNA for IL-2 are present in human carcinomas in vitro and in vivo. Carcinoma cells synchronized in the G2/M-phase of the cell cycle express significantly more intracytoplasmic IL-2 as well as IL-2R-beta and -gamma than tumor cells in the G0/G1-phase. Here we evaluated immunohistologically the cell cycle-dependent distribution of the proliferation-associated Ki-67 antigen and expression of the cytokine IL-2 in four different carcinoma cell lines. In addition, 34 tissue samples from patients with squamous cell carcinomas of the head and neck were simultaneously analyzed for Ki-67 and IL-2 expression and the data were correlated to the histological grade of the tumors. All tumor cell lines were shown to express IL-2 in the Golgi complex. The strongest IL-2 expression was seen in tumor cells undergoing mitosis, identified by double staining with the antibody to Ki-67. In the tumor tissue, the highest level of co-expression of IL-2 and Ki-67 was observed in poorly differentiated carcinomas, with a labeling index (LI) of 67. 2% for IL-2 and 68.8% for Ki-67. Well-differentiated carcinomas showed a significantly lower expression of both proteins (LI 35.0% for IL-2 and 26.5% for Ki-67). The correlation between the labeling indices was statistically significant (r = 0.747; p<0.001). These results demonstrate that IL-2 expression in human carcinoma tissues is strongly associated with cell proliferation and significantly correlates with the histological tumor grade.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is a potent mitogenic and permeability factor targeting predominantly endothelial cells. At least two tyrosine kinase receptors, Flk-1 and Flt-1, mediate its action and are mostly expressed by endothelial cells. VEGF and VEGF receptor expression are upregulated by hypoxia in vivo and the role of VEGF in hypoxia-induced angiogenesis has been extensively studied in a variety of disease entities. Although VEGF and its receptors are abundantly expressed in the lung, their role in hypoxic pulmonary hypertension and the accompanying vascular remodeling are incompletely understood. We report in this in vivo study that hypoxia increases mRNA levels for both VEGF and Flk-1 in the rat lung. The kinetics of the hypoxic response differ between receptor and ligand: Flk-1 mRNA showed a biphasic response to hypoxia with a significant, but transient, rise in mRNA levels observed after 9-15 h of hypoxic exposure and the highest levels noted after 3 wk. In contrast, VEGF mRNA levels did not show a significant increase with acute hypoxia, but increased progressively after 1-3 wk of hypoxia. By in situ hybridization, VEGF mRNA was localized predominantly in alveolar epithelial cells with increased signal in the lungs of hypoxic animals compared with controls. Immunohistochemical staining with anti-VEGF antibodies localized VEGF peptide throughout the lung parenchyma and was increased in hypoxic compared with normoxic animals. Furthermore, hypoxic animals had significantly higher circulating VEGF concentrations compared with normoxic controls. Lung vascular permeability as measured by extravasation of Evans Blue dye was not significantly different between normoxic and hypoxic animals, although a tendency for increased permeability was seen in the hypoxic animals. These findings suggest a possible role for VEGF in the pulmonary response to hypoxia.  相似文献   

19.
The protective effect of fructose with regard to hypoxia-induced cell injury was investigated. The addition of fructose (2 to 20 mmol/L) protected hepatocytes against hypoxia-mediated cell lysis in a concentration-dependent way. The intracellular ATP content was initially decreased as a result of fructose-1-phosphate formation, but it remained constant during the hypoxic incubation. Conversely, high initial ATP values observed at low fructose concentrations progressively declined. Cellular protection was observed only when fructose was added before (and not after) the start of hypoxia. In addition, a sufficient amount of fructose-1-phosphate rapidly accumulated before the induction of hypoxia, and the linear production of lactate, during hypoxic incubation, indicated that cells synthesized ATP continuously. The lack of cell protection by fructose added after the onset of the hypoxia may be explained by a lesser fructose-1-phosphate formation and a subsequently low accumulation leading to insufficient glycolytic ATP production. Under aerobic conditions, both glycolysis (lactate formation) and gluconeogenesis (glucose formation) were carried out in fructose-1-phosphate-loaded cells with the same initial rates, whereas under hypoxic conditions glycolysis was the main metabolic event. The fact that protein synthesis activity recovered faster during reoxygenation of previously hypoxic fructose-treated cells than in glucose-treated cells led us to hypothesize that in situ perfusion of liver with fructose, before its removal, would improve its metabolic capacity during the hypoxic cold preservation and subsequent transplantation.  相似文献   

20.
Previous work has shown that sustained increased and decreased cell proliferation, induced by dietary zinc deficiency and caloric restriction respectively, influence the course of N-nitrosomethylbenzylamine (NMBA)-induced esophageal carcinogenesis in rats. The present study considered whether the increased cell proliferation and esophageal tumor incidence induced by zinc deficiency are reversed upon zinc replenishment. Weanling rats were maintained initially on a deficient diet containing 4 p.p.m. zinc. After 5 weeks, carcinogen-treated animals were given six intragastric doses of NMBA (2 mg/kg twice weekly). Controls were untreated. After the second NMBA dose, the rats were divided into three dietary groups. One group was continued on the deficient diet, while the other two groups were switched to diets containing either 75 or 200 p.p.m. zinc, with half of the members in each group fed ad libitum and half pair-fed with deficient rats. NMBA-untreated controls were similarly replenished. At various time points, esophageal cell proliferation was assessed in five animals from each group by immunohistochemical detection of cells in S phase, with in vivo 5-bromo-2'deoxyuridine labeling. At 11 weeks after the first dose, esophageal tumor incidence was greatly reduced, from 100% in the deficient group to 26 and 14% respectively in the replenished groups fed ad libitum 75 and 200 p.p.m. zinc and to 14 and 11% respectively in the replenished groups pair-fed 75 and 200 p.p.m. zinc. In addition, the number of tumors per esophagus was reduced from 9.93 +/- 4.25 in deficient rats, to a range of 0.11 +/- 0.31-0.30 +/- 0.54 in replenished animals. Following zinc replenishment, esophageal cell proliferation, as measured by labeling index (LI), the number of labeled cells and the total number of cells, was markedly decreased in NMBA-untreated and -treated esophagi as compared with those in corresponding deficient esophagi. Thus, the esophageal cell proliferation induced by zinc deficiency is reversed by zinc replenishment and replenished animals have a markedly lower incidence of esophageal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号