首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although much evidence suggests that the brain dopamine transporter (DAT) is susceptible to dopaminergic regulation, only limited information is available for the vesicular monoamine transporter (VMAT2). In the present investigation, we used a chronic, unlimited-access, cocaine self-administration paradigm to determine whether brain levels of VMAT2, as estimated using [3H]dihydrotetrabenazine (DTBZ) binding, are altered by chronic exposure to a dopamine uptake blocker. Previously, we showed that striatal and nucleus accumbens DAT levels, as estimated by [3H]WIN 35,428 and [3H]GBR 12,935 binding, are altered markedly using this animal model (Wilson et al., 1994). However, in sequential sections from the same animals, [3H]DTBZ binding was normal throughout the entire rostrocaudal extent of the basal ganglia (including striatum and nucleus accumbens), cerebral cortex, and diencephalon, as well as in midbrain and brainstem monoamine cell body regions, both on the last day of cocaine access and after 3 weeks of drug withdrawal. These data provide additional evidence that VMAT2, unlike DAT, is resistant to dopaminergic regulation.  相似文献   

2.
The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/-) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/- mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/- and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/- mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/- and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/- mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/- mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/- and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/- mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.  相似文献   

3.
Since meniscal healing is region-specific, we studied the regional (peripheral compared with central) response of meniscal explants to human, recombinant platelet-derived growth factor-AB. Meniscal explants from the hindlimbs of both knees of mature sheep were sectioned and were cultured with variable doses of human, recombinant platelet-derived growth factor-AB, and incorporation of [3H]-thymidine was measured. The mitogenic response was measured at different times in culture (48 or 96 hours) and by location (lateral or medial). In the absence of the growth factor, the peripheral third of both menisci incorporated 10-fold more [3H]-thymidine on a weight basis than did the central two-thirds. Cellularity was equivalent in the two regions. Doses of less than 100 ng/ml of growth factor produced either no stimulation or a variable response. A dose of 100 ng/ml resulted in consistent, significant (p < 0.05) stimulation in all groups in the peripheral region, and a dose of 200 ng/ml provided more than a 2.5-fold increase. Multiple-factor analysis of variance demonstrated that there were no significant differences between experiments, times in culture, or menisci. The central region did not respond to stimulation with the growth factor at any of the doses tested. These data suggest that regional differences (peripheral compared with central) in responsiveness to human, recombinant platelet-derived growth factor-AB may reflect a different level of signal transduction machinery for growth factor receptors and distinct fibrobchondrocyte populations. These findings are consistent with the variable healing capacity of the meniscal regions in vivo and suggest a pharmacological means to promote the repair of the peripheral meniscal region.  相似文献   

4.
5.
The erythrocytes of paroxysmal nocturnal hemoglobinuria are abnormally sensitive to complement-mediated lysis because they are deficient in membrane proteins that regulate the functional activity of complement. All the deficient proteins in paroxysmal nocturnal hemoglobinuria share the common structural feature of being anchored to the cell surface by a glycosyl phosphatidylinositol moiety. Recent studies showed that the first intermediate in the pathway of the glycosyl phosphatidylinositol anchor synthesis is not formed in paroxysmal nocturnal hemoglobinuria cells. This observation suggests that the molecular basis of paroxysmal nocturnal hemoglobinuria is due to an abnormality involving a gene that encodes a protein essential for the normal biosynthesis of the first intermediate. By using expression cloning, the complementary DNA (called phosphatidylinositol glycan class A [PIG-A]) that corrects the abnormality in glycosyl phosphatidylinositol-anchor synthesis in paroxysmal nocturnal hemoglobinuria cells was identified. Subsequent studies showed that the PIG-A gene is located on the X chromosome. Together, these studies provided a molecular explanation for paroxysmal nocturnal hemoglobinuria.  相似文献   

6.
We used in situ hybridization histochemistry to study the expression of the mRNA of the two vesicular monoamine transporters (VMAT1 and VMAT2) during embryonic and postnatal development of the central nervous system (CNS) in the rat. In the adult rat, VMAT2 mRNA is present exclusively in monoaminergic cell groups of the CNS and VMAT1 mRNA was reported to be present in the adrenal medulla and certain intestinal epithelial cells. In contrast to the above, the expression of VMAT1 mRNA has previously never been detected in the central nervous system. This study shows the first evidence that both transporter molecules are expressed in CNS during ontogenesis. We here demonstrate four main expression patterns detected during development: 1. VMAT2 mRNA expression in monoaminergic neurons of the brainstem beginning as early as embryonic day E13. 2. Expression of VMAT2 mRNA in all major sensory relay nuclei of central nervous system. 3. Co-expression of VMAT1 and VMAT2 mRNA in most limbic structures, basal ganglia, as well as in some hypothalamic nuclei. 4. Exclusive expression of VMAT1 mRNA in the neocortical subventricular zone, in the amygdala at early (E15-18) and late (P1-P28) timepoints, the granular cell layer of cerebellum, and in several brainstem motor nuclei. Based on their distribution during development we suggest that monoamines, released in a controlled fashion, might affect wiring of sensory and also motor circuits. VMAT1 mRNA expression may reflect a specific effect of monoamines in glial differentiation and cerebellar granule cell migration and/or differentiation.  相似文献   

7.
The role of N-glycosylation in the expression, ligand recognition, activity, and intracellular localization of a rat vesicular monoamine transporter (rVMAT1) was investigated. The glycosylation inhibitor tunicamycin induced a dose-dependent decrease in the rVMAT1-mediated uptake of [3H]serotonin. Part of this effect was due to a general toxic effect of the drug. Therefore, to assess the contribution of each of the glycosylation sites to the transporter activity, the three putative N-glycosylation sites were mutated individually, in combination, and in toto ("triple" mutant). Mutation of each glycosylation site caused a minor and additive decrease in activity, up to the triple mutant, which retained at least 50% of the wild-type activity. No significant differences were found either in the time dependence of uptake or the apparent affinity for ligands of the triple mutant compared with the wild-type protein. It is interesting that in contrast to plasma-membrane neurotransmitter transporters, the unglycosylated form of rVMAT1 distributed in the cell as the wild-type protein. Pro43 is a highly conserved residue located at the beginning of the large loop in which all the potential glycosylation sites are found. A Pro43Leu mutant transporter was inactive. It is remarkable that despite the presence of glycosylation sites, the mutant transporter was not glycosylated. Moreover, the distribution pattern of the Pro43Leu mutant clearly differed from that of the wild type. In contrast, a Pro43Gly mutant displayed an activity practically identical to the wild-type protein. As this replacement generated a protein with wild-type characteristics, we suggest that the conformation conferred by the amino acid at this position is essential for activity.  相似文献   

8.
We used in situ hybridization histochemistry to study the expression of the two vesicular monoamine transporters (VMAT1 and VMAT2) during embryonic development in the rat. In the adult rat VMAT2 is present exclusively in neuronal tissues and VMAT1 is present in the adrenal medulla and in certain intestinal endocrine cells. We found that both transporter molecules are more widely expressed during development. We demonstrate a complete overlap of the two VMAT mRNAs in the sympathetic nervous system between E13 and E21 days. In addition, VMAT2 (and to some extent VMAT1) mRNA is expressed in ganglionic cells of the parasympathetic nervous system and in cranial ganglia (trigeminal, vestibular and spiral ganglia) between E12 and E21. The sensory neurons of the dorsal root ganglia, which are also neural crest derivatives, express VMAT2 mRNA (E11-E21), exclusively. Both VMAT mRNAs are found in the developing GI system, but in different cells. VMAT1 mRNA was detected in organs of the endocrine system (pituitary gland, adrenal gland, testis, seminal vesicle), some connective tissue cells, and the thymus. We observed expression of both VMAT mRNAs in two separate cell groups in the placenta (E8-E10). Based on their distribution during development we suggest that monoamines, released in a controlled fashion, might affect migration and differentiation of neural crest derivatives.  相似文献   

9.
The two closely related vesicular monoamine transporters (VMATs) 1 and 2 differ substantially in ligand recognition. The neuronal VMAT2 exhibits a higher affinity for monoamine substrates and in particular for histamine as well as a greater sensitivity to the inhibitor tetrabenazine than the nonneuronal VMAT1. The analysis of chimeric transport proteins has previously shown that two major domains, one spanning transmembrane domains (TMDs) 5-8 (TMD5-8) and the other, TMDs 9-12 (TMD9-12), are required for the high affinity interactions characteristic of VMAT2. Using site-directed mutagenesis to replace residues in TMD5-8 of VMAT2 with the equivalent residues from VMAT1, we now show that the sensitivity of VMAT2 to tetrabenazine requires Ala-315, and this interaction occurs independently of the interaction with residues in TMD9-12. The ability to recognize histamine as a substrate depends on Pro-237, and the contribution of TMD9-12 to histamine recognition appears to involve a common mechanism. In contrast, the replacement of many residues in TMD5-8 of VMAT2 with equivalent residues from VMAT1 improves the recognition of both serotonin and tryptamine, and these mutations show a dominant effect on the recognition of both tryptamine and serotonin over mutations in TMD9-12. The results indicate that different ligands interact through distinct mechanisms with the VMATs and that the recognition of each ligand involves multiple, independent interactions with the transport protein.  相似文献   

10.
Molecular cloning has identified two vesicular monoamine transporters (VMATs), one expressed in non-neural cells of the periphery (VMAT1) and the other by multiple monoamine cell populations in the brain (VMAT2). Functional analysis has previously shown that VMAT2 has a higher affinity than VMAT1 for monoamine neurotransmitters as well as the inhibitor tetrabenazine. The analysis of chimeric transporters has also identified two major regions required for the high affinity interactions of VMAT2 with these ligands. We have now used site-directed mutagenesis to identify the individual residues responsible for these differences. Focusing on the region that spans transmembrane domains 9 through 12, we have replaced VMAT2 residues with the corresponding residues from VMAT1. Many residues in this region had no effect on the recognition of these ligands, but substitution of Tyr-434 with Phe and Asp-461 with Asn reduced the affinity for tetrabenazine, histamine, and serotonin. Although the ability to affect recognition of multiple ligands suggests a general structural role for these residues, the mutations did not affect dopamine recognition, indicating a more specific role, possibly in recognition of the ring nitrogen that occurs in tetrabenazine, histamine, and serotonin but not dopamine. The mutation K446Q reduced the affinity of VMAT2 for tetrabenazine and serotonin but not histamine, whereas F464Y reduced serotonin affinity and perhaps histamine recognition but not tetrabenazine sensitivity, providing more evidence for specificity. Interestingly, the Vmax of both VMATs for dopamine exceeded that for serotonin by 3-5-fold, indicating a difference in the speed of packaging of these two neurotransmitters. We also found that VMAT1 has a higher affinity for tryptamine than VMAT2. This mutually exclusive interaction with serotonin and tryptamine also suggests a physiological rationale for the existence of two VMATs. Surprisingly, the residue responsible for this difference, Tyr-434, also accounts for the higher affinity interaction of VMAT2 with tetrabenazine, histamine, and serotonin. Interestingly, replacement of Tyr-434 with alanine increases the affinity of VMAT2 for both serotonin and dopamine and reduces the rate of dopamine transport.  相似文献   

11.
Experiments were performed on 40 adult rabbits immobilized with Flaxedil. The effect of stimulation of amygdaloid complex on the click evoked potential of Woolsey's AI, AII and the auditory cortex behind the rhinal sulcus (ACBRS) was examined by single unit analysis. The results showed that stimulation of lateral nucleus and basal nucleus of amygdala could induce either a facilitory or an inhibitory effect on the evoked potential and the unit discharges. The latency of the inhibitory effect was about 10-25ms, and lasted for 20-115ms. A facilitory effect with a latency as short as 2ms was also observed in one animal. The experimental results indicate that the effect of amygdaloid complex stimulation as transmitted through polysynaptic circuit while the facilitatory effect was monosynaptic. The functional significance of the amygdaloid effect was discussed.  相似文献   

12.
The recently cloned apical renal transport system for organic cations (OCT2) exists in dopamine-rich tissues such as kidney and some brain areas (Gründemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Sch?mig, E. (1997) J. Biol. Chem. 272, 10408-10413). The study at hand was performed to answer the question of whether OCT2 accepts dopamine and other monoamine transmitters as substrate. 293 cells were stably transfected with the OCT2r cDNA resulting in the 293OCT2r cell line. Expression of OCT2r in 293 cells induces specific transport of tritiated dopamine, noradrenaline, adrenaline, and 5-hydroxytryptamine (5-HT). Initial rates of specific 3H-dopamine, 3H-noradrenaline, 3H-adrenaline, and 3H-5-HT transport were saturable, the Km values being 2.1, 4.4, 1.9, and 3.6 mmol/liter. The corresponding Vmax values were 3.9, 1.0, 0. 59, and 2.5 nmol min-1.mg of protein-1, respectively. 1, 1'-diisopropyl-2,4'-cyanine (disprocynium24), a known inhibitor of OCT2 with a potent eukaliuric diuretic activity, inhibited 3H-dopamine uptake into 293OCT2r cells with an Ki of 5.1 (2.6, 9.9) nmol/liter. In situ hybridization reveals that, within the kidney, the OCT2r mRNA is restricted to the outer medulla and deep portions of the medullary rays indicating selective expression in the S3 segment of the proximal tubule. These findings open the possibility that OCT2r plays a role in renal dopamine handling.  相似文献   

13.
14.
Amphetamine (AMPH) inhibits uptake and causes release of dopamine (DA) from presynaptic terminals. AMPH can act on both vesicular storage of DA and directly on the dopamine transporter (DAT). To assess the relative importance of these two processes, we have examined the releasing actions of AMPH in mice with a genetic deletion of the DAT. The sequence of actions of AMPH has been determined by following the real time changes of DA in the extracellular fluid of intact tissue with fast scan cyclic voltammetry. In striatal slices from wild-type mice, AMPH causes a gradual (approximately 30 min) increase in extracellular DA, with a concomitant disappearance of the pool of DA available for depolarization-evoked release. Conversely, in slices from mice lacking the DAT, although a similar disappearance of electrically stimulated DA release occurs, extracellular DA does not increase. Similarly, microdialysis measurements of DA after AMPH in freely moving animals show no change in mice lacking the DAT, whereas it increases 10-fold in wild-type mice. In contrast, redistribution of DA from vesicles to the cytoplasm by the use of a reserpine-like compound, Ro4-1284, does not increase extracellular DA in slices from wild-type animals; however, subsequent addition of AMPH induces rapid (<5 min) release of DA. Thus, the DAT is required for the releasing action, but not the vesicle-depleting action, of AMPH on DA neurons, and the latter represents the rate-limiting step in the effects of AMPH. Furthermore, these findings suggest that in the absence of pharmacological manipulation, such as the use of amphetamine, endogenous cytoplasmic DA normally does not reach sufficient concentrations to reverse the DAT.  相似文献   

15.
Experiments were conducted to determine how (-)-cocaine and S(+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m-tyramine and S(+)-amphetamine caused release of dopamine from intracellular stores at concentrations > or = 12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m-tyramine and S(+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S(+)-Amphetamine and m-tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (-)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site (K(int) = 583 nM). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (-)-cocaine suggest that the (-)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (-)-cocaine binding may be developed to block (-)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.  相似文献   

16.
1. The present study examined a comparison of the effect of DEX on psychomotor stimulant effects of cocaine and amphetamine in mice by using the locomotor activity test. 2. Cocaine (10 mg/kg/i.p.) and amphetamine (5 mg/kg/i.p.) increased markedly locomotor activity of mice whereas DEX per se (0.1-1.0-10 mg/kg/i.p.) did not modify the activity of control mice. 3. DEX pretreatment decreased the stimulating effects induced both by cocaine and amphetamine but no consistent dose-related effects were observed. 4. The results suggest that DEX may play an important role on the stimulating effects of cocaine and amphetamine and that it may be of some utility in the clinical management of psychostimulants abuse.  相似文献   

17.
Targeted disruption of the insulin receptor gene (Insr) in the mouse was achieved using the homologous recombination approach. Insr+/- mice were normal as shown by glucose tolerance tests. Normal Insr-/- pups were born at expected rates, indicating that Insr can be dispensable for intrauterine development, growth and metabolism. However, they rapidly developed diabetic ketoacidosis accompanied by a marked post-natal growth retardation (up to 30-40% of littermate size), skeletal muscle hypotrophy and fatty infiltration of the liver and they died within 7 days after birth. Total absence of the insulin receptor (IR), demonstrated in the homozygous mutant mice, also resulted in other metabolic disorders: plasma triglyceride level could increase 6-fold and hepatic glycogen content could be five times less as compared with normal littermates. The very pronounced hyperglycemia in Insr-/- mice could result in an increased plasma insulin level of up to approximately 300 microU/ml, as compared with approximately 25 microU/ml for normal littermates. However, this plasma level was still unexpectedly low when compared with human infants with leprechaunism, who lack IR but who could have extremely high insulinemia (up to > 4000 microU/ml). The pathogenesis resulting from a null mutation in Insr is discussed.  相似文献   

18.
We have previously observed that maternal exposure to lead (Pb) results in a reduction of levels of mRNA coding for cholineacetyltransferase (ChAT) in the septum of developing rat without affecting the dams. Here we report that Pb similarly affects the expression of vesicular acetylcholine transporter (VAChT) mRNA in the rat septum. In close agreement with the time course of ChAT mRNA expression, septal VAChT mRNA levels increased from 30% at postnatal day 7 to 78% and 100% of adult levels at days 14 and 21, respectively. Maternal exposure to 0.2% lead acetate in drinking water from gestational day 16 resulted in an approximately 30% reduction of VAChT in 7 and 21-day-old rat pups without affecting VAChT mRNA levels in the dams. These results indicate a developmental stage-dependent interference by Pb with ChAT/VAChT gene expression in the rat septum.  相似文献   

19.
Numerous urine samples were found to be positive when using a new amphetamine immunoassay (AxSYM). Confirmation analysis was carried out in a second laboratory at "reasonable prices" using a simple TLC-method with non specific ninhydrine detection and resulted in many "positive" confirmation findings. The GC/MS analysis clearly indicated the absence of amphetamine derivatives regularly encountered in forensic toxicology. The false-positive immunochemical findings may probably be caused by endogenous substances.  相似文献   

20.
Recently, we cloned the human cation transporter hOCT2, a member of a new family of polyspecific transporters from kidney, and demonstrated electrogenic uptake of tetraethylammonium, choline, N1-methylnicotinamide, and 1-methyl-4-phenylpyridinium. Using polymerase chain reaction amplification, cDNA sequencing, in situ hybridization, and immunohistochemistry, we now show that hOCT2 message and protein are expressed in neurons of the cerebral cortex and in various subcortical nuclei. In Xenopus laevis oocytes expressing hOCT2, electrogenic transport of norepinephrine, histamine, dopamine, serotonin, and the antiparkinsonian drugs memantine and amantadine was demonstrated by tracer influx, tracer efflux, electrical measurements, or a combination. Apparent Km values of 1.9 +/- 0.6 mM (norepinephrine), 1.3 +/- 0.3 mM (histamine), 0.39 +/- 0.16 mM (dopamine), 80 +/- 20 microM (serotonin), 34 +/- 5 microM (memantine), and 27 +/- 3 microM (amantadine) were estimated. Measurement of trans-effects in depolarized oocytes and human embryonic kidney cells expressing hOCT2 suggests that there were different rates and specificities for cation influx and efflux. The hypothesis is raised that hOCT2 plays a physiological role in the central nervous system by regulating interstitial concentrations of monoamine neurotransmitters that have evaded high affinity uptake mechanisms. We show that amantadine does not interact with the expressed human Na+/Cl- dopamine cotransporter. However, concentrations of amantadine that are effective for the treatment of Parkinson's disease may increase the interstitial concentrations of dopamine and other aminergic neurotransmitters by competitive inhibition of hOCT2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号