首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extended Golay codes possess certain two-level structures which are important for decoding the codes. However, these ideal structures are not limited to Golay codes. Here, the structures are generalised to other linear codes. Among which are a binary (20. 9, 7) code, a binary (32, 16, 8) code, a binary (40, 20, 8) code and a ternary (18, 9, 6) code. Similar to the Golay codes, there are also efficient decoding algorithms for these codes, which are sufficiently simple to enable decoding the derived codes by hand calculations  相似文献   

2.
The parity-check matrix of a nonbinary (NB) low-density parity-check (LDPC) code over Galois field GF(q) is constructed by assigning nonzero elements from GF(q) to the 1s in corresponding binary LDPC code. In this paper, we state and prove a theorem that establishes a necessary and sufficient condition that an NB matrix over GF(q), constructed by assigning nonzero elements from GF(q) to the 1s in the parity-check matrix of a binary quasi-cyclic (QC) LDPC code, must satisfy in order for its null-space to define a nonbinary QC-LDPC (NB-QC-LDPC) code. We also provide a general scheme for constructing NB-QC-LDPC codes along with some other code construction schemes targeting different goals, e.g., a scheme that can be used to construct codes for which the fast-Fourier-transform-based decoding algorithm does not contain any intermediary permutation blocks between bit node processing and check node processing steps. Via Monte Carlo simulations, we demonstrate that NB-QC-LDPC codes can achieve a net effective coding gain of 10.8 dB at an output bit error rate of 10-12. Due to their structural properties that can be exploited during encoding/decoding and impressive error rate performance, NB-QC-LDPC codes are strong candidates for application in optical communications.  相似文献   

3.
The binary extended Golay code has a two-level structure, which can be used in the decoding of the code. However, such structure is not limited to the Golay code, in fact, several binary linear codes can be constructed by a projective method which is related to the structure. In this correspondence, the binary (4n,n 2k, ≥min(8, n,2d)) linear codes are resulted from quaternary (n,k,d) linear block codes. Based on the structure, the efficient maximum likelihood decoding algorithms can be presented correspondingly for the derived codes.  相似文献   

4.
An algorithm is presented for the construction of fixed-length insertion/deletion correcting runlength-limited (RLL) codes. In this construction binary (d,k)-constrained codewords are generated by codewords of a q-ary Lee metric based code. It is shown that this new construction always yields better codes than known constructions. The use of a q-ary Lee (1987) metric code (q odd) is based on the assumption that an error (insertion, deletion, or peak-shift) has maximal size (q-1)/2. It is shown that a decoding algorithm for the Lee metric code can be extended so that it can also be applied to insertion/deletion correcting RLL codes. Furthermore, such an extended algorithm can also correct some error patterns containing errors of size more than (q-1)/2. As a consequence, if s denotes the maximal size of an error, then in some cases the alphabet size of the generating code can be s+1 instead of 2·s+1  相似文献   

5.
Maximum-likelihood soft-decision decoding of linear block codes is addressed. A binary multiple-check generalization of the Wagner rule is presented, and two methods for its implementation, one of which resembles the suboptimal Forney-Chase algorithms, are described. Besides efficient soft decoding of small codes, the generalized rule enables utilization of subspaces of a wide variety, thereby yielding maximum-likelihood decoders with substantially reduced computational complexity for some larger binary codes. More sophisticated choice and exploitation of the structure of both a subspace and the coset representatives are demonstrated for the (24, 12) Golay code, yielding a computational gain factor of about 2 with respect to previous methods. A ternary single-check version of the Wagner rule is applied for efficient soft decoding of the (12, 6) ternary Golay code  相似文献   

6.
Weight hierarchies of extremal non-chain binary codes of dimension4   总被引:2,自引:0,他引:2  
The weight hierarchy of a linear [n,k;q] code C over GF(q) is the sequence (d1,d2,···,dk ) where dr is the smallest support of an r-dimensional subcode of C. An [n,k;q] code is extremal nonchain if, for any r and s, where 1⩽rS(D)=dr, and wS (E)=ds. The possible weight hierarchies of such binary codes of dimension 4 are determined  相似文献   

7.
Minimal tail-biting trellises: the Golay code and more   总被引:3,自引:0,他引:3  
Tail-biting trellis representations of block codes are investigated. We develop some elementary theory, and present several intriguing examples, which we hope will stimulate further developments in this field. In particular, we construct a 16-state 12-section structurally invariant tail-biting trellis for the (24, 12, 8) binary Golay code. This tail-biting trellis representation is minimal: it simultaneously minimizes all conceivable measures of state complexity. Moreover, it compares favorably with the minimal conventional 12-section trellis for the Golay code, which has 256 states at its midpoint, or with the best quasi-cyclic representation of this code, which leads to a 64-state tail-biting trellis. Unwrapping this tail-biting trellis produces a periodically time-varying 16-state rate-1/2 “convolutional Golay code” with d=8, which has attractive performance/complexity properties. We furthermore show that the (6, 3, 4) quaternary hexacode has a minimal 8-state group tail-biting trellis, even though it has no such linear trellis over F4. Minimal tail-biting trellises are also constructed for the (8, 4, 4) binary Hamming code, the (4, 2, 3) ternary tetracode, the (4, 2, 3) code over F4, and the Z4-linear (8. 4, 4) octacode  相似文献   

8.
Slepian (1960) introduced a structure theory for linear, binary codes and proved that every such code was uniquely the sum of indecomposable codes. He had hoped to produce a canonical form for the generator matrix of an indecomposable code so that he might read off the properties of the code from such a matrix, but such a program proved impossible. We here work over an arbitrary field and define a restricted class of indecomposable codes-which we call critical. For these codes there is a quasicanonical form for the generator matrix. Every indecomposable code has a generator matrix that is obtained from the generator matrix of a critical, indecomposable code by augmentation. As an application of the this quasicanonical form we illuminate the perfect linear codes, giving, for example, a “canonical” form for the generator matrix of the ternary Golay (1949) code  相似文献   

9.
一类三元线性分组码的译码   总被引:1,自引:0,他引:1  
马建峰  王育民 《通信学报》1996,17(6):129-133
Pless[1]证明了三元(12,6,6)Golay码具有一种双层结构,并据此给出了该码的快速硬判决译码算法。本文推广了Golay码的Pless结构,给出了由三元(n,k,d)线性分组码构造的三元(3,n+k,≥min(n,2d,6))线性分组码,其中包括(12,6,6)Golay码和(18,9,6)码,并以三元(18,9,6)码为例给出了这类码的最大似然软判决译码算法。  相似文献   

10.
On the stopping distance and the stopping redundancy of codes   总被引:2,自引:0,他引:2  
It is now well known that the performance of a linear code /spl Copf/ under iterative decoding on a binary erasure channel (and other channels) is determined by the size of the smallest stopping set in the Tanner graph for /spl Copf/. Several recent papers refer to this parameter as the stopping distance s of /spl Copf/. This is somewhat of a misnomer since the size of the smallest stopping set in the Tanner graph for /spl Copf/ depends on the corresponding choice of a parity-check matrix. It is easy to see that s /spl les/ d, where d is the minimum Hamming distance of /spl Copf/, and we show that it is always possible to choose a parity-check matrix for /spl Copf/ (with sufficiently many dependent rows) such that s=d. We thus introduce a new parameter, the stopping redundancy of /spl Copf/, defined as the minimum number of rows in a parity- check matrix H for /spl Copf/ such that the corresponding stopping distance s(H) attains its largest possible value, namely, s(H)=d. We then derive general bounds on the stopping redundancy of linear codes. We also examine several simple ways of constructing codes from other codes, and study the effect of these constructions on the stopping redundancy. Specifically, for the family of binary Reed-Muller codes (of all orders), we prove that their stopping redundancy is at most a constant times their conventional redundancy. We show that the stopping redundancies of the binary and ternary extended Golay codes are at most 34 and 22, respectively. Finally, we provide upper and lower bounds on the stopping redundancy of MDS codes.  相似文献   

11.
Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson (1967), Kerdock (1972), Preparata (1968), Goethals (1974), and Delsarte-Goethals (1975). It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modification of the Preparata and Goethals codes). The construction implies that all these binary codes are distance invariant. Duality in the Z4 domain implies that the binary images have dual weight distributions. The Kerdock and “Preparata” codes are duals over Z4-and the Nordstrom-Robinson code is self-dual-which explains why their weight distributions are dual to each other. The Kerdock and “Preparata” codes are Z4-analogues of first-order Reed-Muller and extended Hamming codes, respectively. All these codes are extended cyclic codes over Z4, which greatly simplifies encoding and decoding. An algebraic hard-decision decoding algorithm is given for the “Preparata” code and a Hadamard-transform soft-decision decoding algorithm for the I(Kerdock code. Binary first- and second-order Reed-Muller codes are also linear over Z4 , but extended Hamming codes of length n⩾32 and the Golay code are not. Using Z4-linearity, a new family of distance regular graphs are constructed on the cosets of the “Preparata” code  相似文献   

12.
The Hamming weight hierarchy of a linear [n,k;q] code c over GF(q)is the sequence(d1,d2,…,dk),where dr is the smallest support weight of an r-dimensional subcode of c.According to some new necessary conditions,the VI class Hamming weight hierarchies of q -ary linear codes of dimension 5 can be divided into six subclasses. By using the finite projective geometry method, VI-2 subclass and determine were researched almost all weight hierarchies of the VI-2 subclass of weight hierarchies of q -ary linear codes with dimension 5.  相似文献   

13.
This paper analyzes the performance of concatenated coding systems operating over the binary-symmetric channel (BSC) by examining the loss of capacity resulting from each of the processing steps. The techniques described in this paper allow the separate evaluation of codes and decoders and thus the identification of where loss of capacity occurs. They are, moreover, very useful for the overall design of a communications system, e.g., for evaluating the benefits of inner decoders that produce side information. The first two sections of this paper provide a general technique (based on the coset weight distribution of a binary linear code) for calculating the composite capacity of the code and a BSC in isolation. The later sections examine the composite capacities of binary linear codes, the BSC, and various decoders. The composite capacities of the (8,4) extended Hamming, (24, 12) extended Golay, and (48, 24) quadratic residue codes appear as examples throughout the paper. The calculations in these examples show that, in a concatenated coding system, having an inner decoder provide more information than the maximum-likelihood (ML) estimate to an outer decoder is not a computationally efficient technique, unless generalized minimum-distance decoding of an outer code is extremely easy. Specifically, for the (8,4) extended Hamming and (24, 12) extended Golay inner codes, the gains from using any inner decoder providing side information, instead of a strictly ML inner decoder, are shown to be no greater than 0.77 and 0.34 dB, respectively, for a BSC crossover probability of 0.1 or less, However, if computationally efficient generalized minimum distance decoders for powerful outer codes, e.g., Reed-Solomon codes, become available, they will allow the use of simple inner codes, since both simple and complex inner codes have very similar capacity losses  相似文献   

14.
Low-density parity check codes over GF(q)   总被引:2,自引:0,他引:2  
Gallager's (1962) low-density binary parity check codes have been shown to have near-Shannon limit performance when decoded using a probabilistic decoding algorithm. We report the empirical results of error-correction using the analogous codes over GF(q) for q>2, with binary symmetric channels and binary Gaussian channels. We find a significant improvement over the performance of the binary codes, including a rate 1/4 code with bit error probability <10-5 at Eb/N0=0.2 dB  相似文献   

15.
Previously, (linear) codes over Z4 and quasi-cyclic (QC) codes (over fields) have been shown to yield useful results in coding theory. Combining these two ideas we study Z 4-QC codes and obtain new binary codes using the usual Gray map. Among the new codes, the lift of the famous Golay code to Z4 produces a new binary code, a (92, 224, 28)-code, which is the best among all binary codes (linear or nonlinear). Moreover, we characterize cyclic codes corresponding to free modules in terms of their generator polynomials  相似文献   

16.
An(n, k, d)linear code overF=GF(q)is said to be {em maximum distance separable} (MDS) ifd = n - k + 1. It is shown that an(n, k, n - k + 1)generalized Reed-Solomon code such that2leq k leq n - lfloor (q - 1)/2 rfloor (k neq 3 {rm if} qis even) can be extended by one digit while preserving the MDS property if and only if the resulting extended code is also a generalized Reed-Solomon code. It follows that a generalized Reed-Solomon code withkin the above range can be {em uniquely} extended to a maximal MDS code of lengthq + 1, and that generalized Reed-Solomon codes of lengthq + 1and dimension2leq k leq lfloor q/2 rfloor + 2 (k neq 3 {rm if} qis even) do not have MDS extensions. Hence, in cases where the(q + 1, k)MDS code is essentially unique,(n, k)MDS codes withn > q + 1do not exist.  相似文献   

17.
Two product array codes are used to construct the (24,12,8) binary Golay code through the direct sum operation. This construction provides a systematic way to find proper (8,4,4) linear block component codes for generating the Golay code, and it generates and extends previously existing methods that use a similar construction framework. The code constructed is simple to decode  相似文献   

18.
An extremal self-dual doubly-even binary (n,k,d) code has a minimum weight d=4/spl lfloor/n/24/spl rfloor/+4. Of such codes with length divisible by 24, the Golay code is the only (24,12,8) code, the extended quadratic residue code is the only known (48,24,12) code, and there is no known (72,36,16) code. One may partition the search for a (48,24,12) self-dual doubly-even code into three cases. A previous search assuming one of the cases found only the extended quadratic residue code. We examine the remaining two cases. Separate searches assuming each of the remaining cases found no codes and thus the extended quadratic residue code is the only doubly-even self-dual (48,24,12) code.  相似文献   

19.
New binary codes     
We report on the construction of many binary linear codes improving the tables of the best known codes. We obtained our results by applying the following known constructions: shortening and puncturing codes by analyzing their duals; and transferring a [64,8,43] code over GF(4) into a binary code and applying various constructions to the resulting code  相似文献   

20.
Starting from results on elliptic curves and Kloosterman sums over the finite field GE(2t), the authors determine the weights of the orthogonals of some binary linear codes; the Melas code of length, the irreducible cyclic binary code of length 2t+1, and the extended binary Goppa codes defined by polynomials of degree two  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号