首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To provide anatomical information on the complex effects of acetylcholine (ACh) in the olfactory bulb (OB), the distribution of different cholinergic muscarinic and nicotinic receptor sub-types was studied by quantitative in vitro autoradiography. The muscarinic M1-like and M2-like sub-types, as well as the nicotinic bungarotoxin-insensitive (alpha 4 beta 2-like) and bungarotoxin-sensitive (alpha 7-like) receptors were visualized using [3H]pirenzepine, [3H]AF-DX 384, [3H]cytisine and [125I] alpha-bungarotoxin (BTX), respectively. In parallel, labelling patterns of [3H]vesamicol (vesicular acetylcholine transport sites) and [3H]hemicholinium-3 (high-affinity choline uptake sites), two putative markers of cholinergic nerve terminals, were investigated. Specific labelling for each cholinergic radioligand is distributed according to a characteristic laminar and regional pattern within the OB revealing the lack of a clear overlap between cholinergic afferents and receptors. The presynaptic markers, [3H]vesamicol and [3H]hemicholinium-3, demonstrated similar laminar pattern of distribution with two strongly labelled bands corresponding to the glomerular layer and the area around the mitral cell layer. Muscarinic M1-like and M2-like receptor sub-types exhibited unique distribution with their highest levels seen in the external plexiform layer (EPL). Intermediate M1-like and M2-like binding densities were found throughout the deeper bulbar layers. In the glomerular layer, the levels of muscarinic receptor subtypes were low, the level of M2-like sites being higher than M1. Both types of nicotinic receptor sub-types displayed distinct distribution pattern. Whereas [125I] alpha-BTX binding sites were mostly concentrated in the superficial bulbar layers, [3H]cytisine binding was found in the glomerular layers, as well as the mitral cell layer and the underlying laminae. An interesting feature of the present study is the visualization of two distinct cholinoceptive glomerular subsets in the posterior OB. The first one exhibited high levels of both [3H]vesamicol and [3H]hemicholinium-3 sites. It corresponds to the previously identified atypical glomeruli and apparently failed to express any of the cholinergic receptors under study. In contrast, the second subset of glomeruli is not enriched with cholinergic nerve terminal markers but displayed high amounts of [3H]cytisine/nicotinic binding sites. Taken together, these results suggest that although muscarinic receptors have been hypothesized to be mostly involved in cholinergic olfactory processing and short-term memory in the OB, nicotinic receptors, especially of the cytisine/ alpha 4 beta 2 sub-type, may have important roles in mediating olfactory transmission of efferent neurons as well as in a subset of olfactory glomeruli.  相似文献   

2.
The finding that ascending cholinergic systems are severely degenerated in Alzheimer's disease has driven the search for a cholinomimetic therapy. Adverse effects observed with cholinesterase inhibitors and high-efficacy muscarinic agonists led us to design compounds with an improved profile. SB 202026 (R-(Z)-(+)-alpha-(methoxyimino)-1-azabicyclo[2.2.2] octane-3-acetonitrile) displaced [3H]-oxotremorine-M from muscarinic receptors in the rat brain with high affinity (IC50 = 14 nM), a potency similar to that of oxotremorine-M itself (IC50 = 13 nM), but exhibited low affinity for cholinergic nicotinic receptors and other neuroreceptors. In studies using cloned human muscarinic receptors, SB 202026 possessed approximately equal affinity in displacing [3H]-quinuclidinyl benzilate from all muscarinic receptor subtypes. In functional models in vitro, SB 202026 caused maximal depolarization of the rat superior cervical ganglion at low concentrations (300 nM) (M1-mediated effect), while producing a lower maximal effect than the high-efficacy agonists oxotremorine-M and carbachol on M2-mediated release of ACh and M3-mediated smooth muscle contraction (guinea pig ileum), respectively. The functional selectivity and partial agonist profile seen in vitro were reflected in vivo through potent cognition-related activity (M1-induced increase in hippocampal EEG power) combined with low efficacy, compared with arecoline or oxotremorine, on induction of bradycardia (M2-mediated response), hypotension (via M3-mediated vasorelaxation) and tremor (thought to be mediated by M3 receptors). The foregoing profile of SB 202026 predicted that cognition-enhancing activity would be achieved at doses below those that initiate undesirable side effects, and this has subsequently been demonstrated in rodents, marmosets and humans.  相似文献   

3.
Ethanol disrupts signal transduction mediated by a variety of G-protein coupled receptors. We examined the effects of ethanol on arachidonic acid release mediated by muscarinic acetylcholine receptors. Chinese hamster ovary (CHO) cells transfected with the different subtypes of human muscarinic receptors (M1 to M5) were incubated with [3H]arachidonic acid ([3H]AA) for 18 hr, washed, and exposed to the cholinergic agonist carbamylcholine for 15 min. Carbamylcholine induced [3H]AA release from CHO cells expressing M1, M3, or M5, but not M2 or M4, muscarinic receptors. Dose response curves revealed that carbamylcholine stimulated [3H]AA release by up to 12-fold with an ECo of approximately 0.4 microM; maximal responses were obtained with 10 microM carbamylcholine. Exposure of M1-, M3-, or M5-expressing cells to ethanol for 5 min before stimulating with carbamylcholine reduced [3H]AA release by 40 to 65%; 50% of the maximal inhibition was obtained with an ethanol concentration of 30 to 50 mM. Ethanol did not affect basal [3H]AA release measured in the absence of carbamylcholine. Dose response curves suggest that ethanol acts as a noncompetitive inhibitor of muscarinic receptor-induced [3H]AA release insofar as maximal [3H]AA release was depressed in the presence of ethanol with no apparent change in the EC50 for stimulation by carbamylcholine. Exposure of CHO cells to 38 mM ethanol for 48 hr increased [3H]AA release induced by carbamylcholine without affecting basal [3H]AA release or altering the EC50 for carbamylcholine. These results indicate that ethanol acutely inhibits muscarinic receptor signaling through the arachidonic acid pathway in a noncompetitive manner, but chronically enhances muscarinic signaling through the same pathway.  相似文献   

4.
Muscarinic receptors in the spinal cord have been shown to mediate antinociception and alter blood pressure. Currently, there is much interest in identifying which muscarinic receptor subtypes regulate these functions. Toward that end, this study aimed to identify and localize the muscarinic receptor subtypes present in spinal cord using in vitro receptor autoradiography with [3H]-pirenzepine and [3H]-N-methylscopolamine. The results showed that M2 binding sites were distributed throughout the dorsal and ventral horns, whereas M3 binding sites were localized to laminae I to III of the dorsal horn. Only background levels of M1 binding sites were detected. Saturation binding assays using [3H]-pirenzepine in spinal cord homogenates confirmed the absence of M1 receptors. Competition membrane receptor assays using [3H]-N-methylscopolamine and the unlabeled antagonists pirenzepine, 11-2[(-[(diethylamino)methyl]-1-piperidinyl)-acetyl]-5, 11-dihydro 6H-pyrido(2, 3-b)(1, 4) benzodiazepine-one, methoctramine, and methoctramine in combination with atropine corroborated the autoradiographic findings and also revealed the presence of M4 binding sites. The finding that M2 and M3 binding sites were localized to the superficial laminae of the dorsal horn where nociceptive A delta and C fibers terminate suggests the possibility that either or both of these muscarinic receptor subtypes modulate antinociception. The present demonstration of M4 binding sites in spinal cord is consistent with the possibility that M2 and/or M4 receptors are involved in the regulation of blood pressure at the spinal level.  相似文献   

5.
The ontogenic profiles of several cholinergic markers were assessed in the rat brain by using quantitative in vitro receptor autoradiography. Brain sections from animals at different stages of development were processed with [3H]AH5183 (vesamicol; vesicular acetylcholine transport sites), [3H]N-methylcarbamylcholine (alpha(4)beta(2) nicotinic receptor sites), [3H]hemicholinium-3 (high-affinity choline uptake sites), [3H]3-quinuclidinyl benzilate (total population of muscarinic receptor sites), [3H]4-DAMP (muscarinic M1/M3 receptor sites), [3H]pirenzepine (muscarinic M1 receptor sites), and [3H]AF-DX 116 and [3H]AF-DX 384 (muscarinic M2 receptor sites) as radiolabeled probes. The results revealed that, by the end of the prenatal period (embryonic day 20), the densities of nicotinic receptor and vesicular acetylcholine transport sites already represented a considerable proportion of those observed in adulthood (postnatal day 60) in different laminae of the frontal, parietal, and occipital cortices, in the layers of Ammon's horn fields and the dentate gyrus of the hippocampal formation, as well as in the amygdaloid body, the olfactory tubercle, and the striatum. In contrast, at that stage, the densities of total muscarinic, M1/M3, M1, and possibly M2 receptor and high-affinity choline uptake sites represent only a small proportion of levels seen in the adult. Differences were also observed in the postnatal ontogenic profiles of nicotinic, muscarinic, vesamicol, and high-affinity choline uptake sites. For example, between postnatal weeks 3 and 5, the levels of M1/M3 and M1 sites were at least as high as in the adult, whereas M2 and high-affinity choline uptake site densities appeared to be delayed and to reach adult values only after postnatal week 5. With regard to cholinergic innervation in the developing rat brain, the present findings suggest a temporal establishment of several components of the cholinergic systems. The first components are the vesicular acetylcholine transporter and nicotinic sites; these are followed by M1/M3 and M1 sites and, finally, by M2 and high-affinity choline uptake sites.  相似文献   

6.
Intraventricular administration of carbachol can induce phase shifts in wheel-running activity in rodents, which depend on circadian phase and are mediated via muscarinic cholinergic receptors in Syrian hamsters. We studied the circadian variation in binding of [3H]-N-methylscopolamine ([3H]NMS), a hydrophilic muscarinic receptor antagonist, in micropunches obtained from the anterior hypothalamus and occipital cortex of Syrian hamsters housed in a 14:10 light:dark cycle. Binding sites were characterized on cells contained within 1 mm punches (obtained from slices 300 microm thick), using a method to selectively detect cell surface (functional) receptors. Atropine sulphate was used to determine nonspecific binding. Cortex showed a significant daily rhythm in [3H]NMS binding with a peak occurring late in the light phase and a trough at lights on, while the hypothalamus showed no detectable rhythm. Following suprachiasmatic nucleus (SCN) ablation or maintenance in constant darkness, the rhythm in the cortex was abolished. These findings suggest that photic information conveyed via the SCN is responsible for the receptor binding rhythm in the cortex. Autoradiographic studies ([3H]NMS; 2 nM, 3 weeks exposure) clearly revealed both M1 and M2 subtypes of muscarinic receptors in the region of the SCN and the visual cortex.  相似文献   

7.
It is generally believed that the neuronal form of nitric oxide synthase (nNOS) is constitutively expressed and that regulation of this enzyme's activity is mediated solely by changes in cytosolic calcium concentration. Serendipitously, however, we observed that pretreatment of Chinese hamster ovary (CHO) cells, which coexpress muscarinic M1 receptors and nNOS, with 3.3 microM or 1 mM carbachol (CCh) for 48 h resulted in marked enhancement of maximal muscarinic receptor-stimulated nNOS activity as determined by L-[3H]citrulline and cyclic [3H]GMP production. This was accompanied by a decrease in the potency of CCh. Muscarinic receptor density was reduced in the agonist-pretreated cells, as determined by specific [N-methyl-3H]scopolamine methyl chloride binding, whereas competition binding studies revealed no changes in agonist affinity. Both receptor-stimulated inositol phosphate formation and elevation of intracellular calcium concentrations were found to be desensitized in agonist-pretreated cells in a manner dependent on CCh pretreatment concentration. It is interesting that ionomycin-stimulated nNOS activity was greater in CCh-pretreated cells. Also, western analysis revealed increased nNOS immunoreactivity in pretreated cells. A similar increase in nNOS immunoreactivity following agonist treatment was demonstrated in N1E-115 neuroblastoma cells, which endogenously express nNOS and muscarinic M1 receptors. Thus, the enhancement of maximal receptor-stimulated nNOS activity following agonist pretreatment can be attributed to up-regulation of nNOS. It is interesting that this augmentation of the response takes place in spite of receptor down-regulation and desensitization of multiple steps involved in nNOS activation.  相似文献   

8.
Tolterodine [(R)-N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropanamine ] is a new potent and competitive muscarinic receptor antagonist developed for the treatment of urinary urge incontinence and other symptoms of overactive bladder. In vivo, tolterodine exhibits functional selectivity for the urinary bladder over salivary glands, a profile that cannot be explained in terms of selectivity for a single muscarinic receptor subtype. The aim of this study was to compare the in vitro and in vivo antimuscarinic profiles of tolterodine with those of muscarinic receptor antagonists with distinct receptor subtype-selectivity profiles: darifenacin [(S)-2-[1-[2-(2,3-dihydrobenzofuran-5-yl)ethyl]-3-pyrrolidinyl]-2,2-d iphenylacetamide; selective for muscarinic M3 receptors]; UH-AH 37 (6-chloro-5,10-dihydro-5-[(1-methyl-4-piperidinyl)acetyl]-11H-dibenzo-[b ,e][1,4]diazepine-11-one; low affinity for muscarinic M2 receptors); and AQ-RA 741 (11-([4-[4-(diethylamino)butyl]-1-piperidinyl]acetyl)-5,11-dihydro-6H-py rido[2,3-b][1,4]benzodiazepine-6-one; high affinity for muscarinic M2 receptors). The in vitro profiles of these compounds were in agreement with previous reports; darifenacin and UH-AH 37 demonstrated selectivity for muscarinic M3/m3 over M2/m2 receptors, while the converse was observed for AQ-RA 741. In vivo, AQ-RA 741 was more potent (1.4-2.7-fold) in inhibiting urinary bladder contraction than salivation in the anaesthetised cat (i.e., a profile similar to that of tolterodine [2.5-3.3-fold]), while darifenacin and UH-AH 37 showed the reverse selectivity profile (0.6-0.8 and 0.4-0.5-fold, respectively). The results confirm that it is possible to separate the antimuscarinic effects on urinary bladder and salivary glands in vivo. The data on UH-AH 37 and darifenacin support the view that a selectivity for muscarinic M3/m3 over M2/m2 receptors may result in a more pronounced effect on salivation than on bladder contraction. The data on AQ-RA 741 may indicate that muscarinic M2/m2 receptors may have a role in bladder contraction.  相似文献   

9.
Carbachol, a full muscarinic receptor agonist, stimulated [3H]inositol phosphate accumulation in both the ventral and dorsal hippocampus, but its efficacy and affinity were higher in the former area. The partial agonist oxotremorine had a weak stimulatory effect in both regions. The affinity profiles of pirenzepine and AF-DX 116 in antagonizing carbachol-stimulated [3H]inositol phosphate accumulation indicated that M1 and M3 receptors contributed equally to the response in either region. On the other hand, there were no differences in the receptor density, or in the distribution of muscarinic receptor subtypes between the two regions of the hippocampus which could account for the effect as determined in binding experiments with selective antagonists. Analysis of carbachol binding curves did, instead, indicate a difference in the way the agonist interacted with the receptors within the hippocampus, i.e., carbachol recognized three agonist affinity states (superhigh, high and low) in the ventral hippocampus, and only two (high and low) in the dorsal part. The findings thus suggested that the regional diversity in the efficacy of carbachol in stimulating phosphoinositide turnover was related to the complexity with which it bound to muscarinic receptors. Transduction processes that intervene between changes in the muscarinic receptors' conformation and activation of phospholipase C might be relevant to these differences.  相似文献   

10.
The presence of a cholinergic system in the placenta is suggested by several data, but no information is available concerning cholinergic receptor expression by placenta. The present study was designed to investigate muscarinic cholinergic receptors in sections of human placenta using a radioligand binding techniques with [3H]N-methyl scopolamine ([3H]NMS) as a ligand. [3H]NMS was bound to sections of human placenta in a manner consistent with the labelling of muscarinic cholinergic receptors. The dissociation constant (Kd) value was 0.1 +/- 0.03 nM and the maximum density of binding site (Bmax) value was 10.82 +/- 0.09 fmol/mg of tissue. The binding was time-, temperature- and concentration-dependent, belonging to one class of high affinity sites. Analysis of [3H]NMS displacement curves by compounds acting on the different subtypes of muscarinic cholinergic receptor subtypes suggests that human placenta expresses the four subtypes (M1-M4) of muscarinic cholinergic receptor assayable with radioligand binding assay techniques. The demonstration of muscarinic cholinergic recognition sites in human placenta may contribute to define the possible significance of placental cholinergic system. Moreover, human placenta can be used as an easily obtainable human source of M1-M4 muscarinic cholinergic receptor subtypes.  相似文献   

11.
Quantitative RNase protection assays were performed to determine the levels of muscarinic receptor subtype (m1-m5) mRNAs in rat hippocampi. Results showed that the m1, m3, and m4 subtype mRNAs were expressed at relatively high levels, but the levels of the m2 and m5 subtype were very low. Three weeks following aspiration lesions of the fimbria-fornix to produce cholinergic denervation of the hippocampus, non-M1 receptors (non-pirenzepine displaceable [3H]quinuclindinyl benzilate binding sites) in the hippocampus were increased significantly, which correlated with increases in the levels of hippocampal m3 and m4 receptor mRNAs (m3: +24% and m4: +41%). These findings indicate that multiple muscarinic receptor subtypes are expressed in the hippocampus with the m3 and m4 subtypes predominantly postsynaptic to the septohippocampal cholinergic terminals.  相似文献   

12.
1-Azabicyclo[2,2,2]octane,3-(6-chloropyrazinyl)maleate (L-689,660) reportedly is an agonist with selectivity for M1 and M3 muscarinic receptors. We confirmed this in functional assays of brain muscarinic receptors and of cloned human muscarinic receptors transfected into Chinese hamster ovary (CHO-K1) cells. For stimulation of phosphoinositide turnover in rat cortical and hippocampal dissociated tissue, L-689,660 was a partial agonist (24% and 26% intrinsic activity, respectively, relative to oxotremorine-M) with EC50 values of 71 microM and 118 microM, respectively. At putative M4 receptors coupled to cyclic AMP inhibition in rat striatum, however, L-689,660 acted as a competitive antagonist (KB = 0.4 microM). Furthermore, at putative M2/M4 autoreceptors that regulate acetylcholine release in the hippocampus, the drug also behaved as an antagonist (KB = 2.1 microM). These data indicated that L-689,660 behaves as a postsynaptic agonist/presynaptic antagonist at central cholinergic synapses. Further aspects of the selectivity of the drug for specific muscarinic receptor subtypes were revealed with phosphoinositide turnover assays of cloned muscarinic receptors expressed in CHO-K1 cells. L-689,660 was a partial agonist at transfected hm1 and hm3 receptors and was more potent than oxotremorine-M; however, the drug was inactive at transfected hm5 receptors. Partial agonist activity at hm1 and hm3 muscarinic receptors was present even after using alkylation to reduce receptor numbers to levels comparable to that level found in the hm5 cell line. Thus, with functional assays either with brain tissue or with transfected cell lines, L-689,660 was shown to be an agonist for the M1 and M3 receptors but not for M5 or M4 receptors.  相似文献   

13.
Sequestration of m2 receptors (muscarinic acetylcholine receptor m2 subtypes), which was assessed as loss of N-[3H]methylscopolamine ([3H]NMS) binding activity from the cell surface, was examined in COS 7 and BHK-21 cells that had been transfected with expression vectors encoding the m2 receptor and, independently, vectors encoding a G protein-coupled receptor kinase (GRK2) (beta-adrenergic receptor kinase 1) or a GRK2 dominant-negative mutant (DN-GRK2). The sequestration of m2 receptors became apparent when the cells were treated with 10(-5) M or higher concentrations of carbamylcholine. In this case, approximately 40% or 20-25% of the [3H]NMS binding sites on COS 7 or BHK-21 cells, respectively, were sequestered with a half-life of 15-25 min. In cells in which GRK2 was also expressed, the sequestration became apparent in the presence of 10(-7) M carbamylcholine. Approximately 40% of the [3H]NMS binding sites on both COS 7 and BHK-21 cells were sequestered in the presence of 10(-6) M or higher concentrations of carbamylcholine. When DN-GRK2 was expressed in COS 7 cells, the proportion of [3H]NMS binding sites sequestered in the presence of 10(-5) M or higher concentrations of carbamylcholine was reduced to 20-30%. These results indicate that the phosphorylation of m2 receptors by GRK2 facilitates their sequestration. These results are in contrast with the absence of a correlation between sequestration and the phosphorylation of beta-adrenergic receptors by the GRK2 and suggests that the consequences of phosphorylation by GRK2 are different for different receptors.  相似文献   

14.
Muscarinic receptor subtypes were characterized in fetal (21 day), newborn (3 day), and adult (3 month) rat colon smooth muscle. Saturation binding of the nonselective muscarinic antagonist radioligand [3H]quinuclidinyl benzilate revealed a single class of binding sites in all three age groups. The binding affinities of [3H]quinuclidinyl benzilate were not significantly different among three age groups (KD: 0.19-->0.27 nM). In contrast, the receptor densities (Bmax, fmol/mg protein) showed a significant age-related decrease with fetus (518.9 +/- 7.4) > newborn (480.3 +/- 45.6) > adult (192.4 +/- 32.8). In both newborn and adult tissues, the muscarinic agonist carbachol bound to two sites with high and low affinities. Although the agonist binding affinities in the newborn tissue were not significantly different from those in the adult tissue, the high-affinity binding sites for carbachol were significantly increased in the later (41%-->61%). Addition of guanosine-5'-O-(3-thio)triphosphate (100 microM) abolished apparent high-affinity binding sites in both newborn and adult tissues. Antagonist competition binding in the newborn tissue indicated a homogeneous population of muscarinic M2 receptors. Unlike in newborn tissues, the heterogeneous binding of pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methobromide in adult tissues revealed coexistence of muscarinic M3 (45%) and M2 (55%) receptors. In accordance, activation of muscarinic receptors in the adult tissue stimulated synthesis of inositol 1,4,5-trisphosphate. These results suggest maturational changes of muscarinic receptor subtypes and their coupling to G proteins in rat colonic smooth muscle. These changes may account, at least in part, for developmental alterations of functional responses in colonic smooth muscle.  相似文献   

15.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 microM) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

16.
1. The affinities of 10 selective muscarinic receptor antagonists against [3H]-quinuclidinyl benzilate (QNB) binding were determined to characterize the muscarinic receptors present in guinea-pig gallbladder smooth muscle. The highest correlation was obtained for the comparison between the pKi values for the gallbladder smooth muscle and M2 sites. Pirenzepine revealed two binding sites with affinities indicating the presence of muscarinic M2 receptors in abundance and a minor population of an additional site(s). 2. Carbachol produced gallbladder contractions, stimulated phosphoinositide (PI) hydrolysis and inhibited cAMP formation concentration-dependently with pD2 values of 6.12 +/- 0.11, 5.18 +/- 0.33 and 7.19 +/- 0.15, respectively. 3. Pirenzepine, 4-DAMP, HHSiD, pF-HHSiD, AF-DX 116, methoctramine, AQ-RA 741, guanylpirenzepine and AF-DX 384 showed competitive antagonism against carbachol-induced gallbladder contractions. There was no correlation between the pA2 values for the gallbladder and pKi values for the M2 sites, whereas significant correlations were found for the M1, M3 and M4 sites, the best correlation being between the pA2 values for the gallbladder and M4 subtypes. 4. Finally, the presence of both m2 and m4 receptor proteins were demonstrated by Western blot analysis. It is concluded that guinea-pig gallbladder smooth muscle has both muscarinic M2 and M4 receptors, which are coupled to adenylate cyclase inhibition and PI hydrolysis. 5. Although it seems likely that M2 receptors do not play a primary role in carbachol-induced guinea-pig gallbladder contraction, the characterization of the muscarinic subtypes which mediate these contractile responses needs further evidence.  相似文献   

17.
The present study describes some unexpected receptor mediated effects of N-methylcarbamylcholine on mouse M1 muscarinic receptor gene transfected cell line (M1Y1) that were not evident from biochemical studies with mouse and rat brain tissue where N-methylcarbamylcholine exhibited only nicotinic properties. Although N-methylcarbamycholine was devoid of muscarinic properties in mouse and rat brain preparations, as determined by phosphoinositide turnover and inhibition of [3H]QNB binding, it exhibited significant muscarinic characteristics in the transfected M1Y1 cell line. At a concentration of 10(-6) M or greater, N-methylcarbamycholine caused a transient increase in intracellular Ca2+ of 50 s duration that was reversible by atropine or pirezepine. The Ca(2+)-transient was not elicited by other nicotinic agents such as nicotine and N,N-dimethylcarbamylcholine, a close analogue of N-methylcarbamylcholine, with comparable affinity for nicotinic receptors and devoid of muscarinic activity. N-Methylcarbamylcholine also stimulated phosphoinositide turnover in M1Y1 cells with an estimated EC50 value 10 times greater than that of carbachol, and the effect was blocked by atropine. Both carbachol and N-methylcarbamycholine inhibited [3H]QNB binding in a concentration-dependent manner; however, the IC50 for carbachol was over two orders of magnitude greater than that observed in mouse and rat brain membranes. In considering possible explanations for the differential characteristics of N-methylcarbamylcholine in mouse and rat brain as compared to the transfected M1Y1 cells, it was concluded that the difference may be attributable to differences in the receptor-transduction coupling efficiency and the microenvironment of the muscarinic receptors.  相似文献   

18.
Presynaptic modulation of [3H]GABA release was examined using rat cerebral cortical slices. In vitro addition of carbachol, a muscarinic receptor agonist, resulted in a significant suppression of the release of [3H]GABA evoked by high potassium (50 mM) stimulation in a dose dependent manner, while noradrenaline, isoproterenol, dopamine, 5-hydroxytryptamine, histamine and glutamic acid had no significant effect on the evoked release of [3H]GABA. This suppressive effect of carbachol was antagonized invariably by atropine. Furthermore, it was found that the suppressive action of carbachol could be antagonized by pirenzepine, a selective M1 muscarinic receptor antagonist, but not by AF-DX 116 and 4-DAMP, M2 and M3 receptor antagonists, respectively. These results suggest that the release of GABA from cerebral cortical GABA neurons may be modulated by presynaptic M1 muscarinic receptor.  相似文献   

19.
Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine] has been evaluated as a muscarinic receptor agonist. In vitro, xanomeline had high affinity for muscarinic receptors in brain homogenates, but had substantially less or no affinity for a number of other neurotransmitter receptors and uptake sites. In cells stably expressing genetic m1 receptors, xanomeline increased phospholipid hydrolysis in CHO, BHK and A9 L cells to 100, 72 and 55% of the nonselective agonist carbachol. In isolated tissues, xanomeline had high affinity for M1 receptors in the rabbit vas deferens (IC50 = 0.006 nM), low affinity for M2 receptors in guinea pig atria (EC50 = 3 microM), was a weak partial agonist in guinea pig ileum and was neither an agonist nor antagonist in guinea pig bladder. In vivo, xanomeline increased striatal levels of dopamine metabolites, presumably by acting at M1 heteroreceptors on dopamine neurons to increase dopamine release. In contrast, xanomeline had only a relatively small effect on acetylcholine levels in brain, indicating that it is devoid of actions at muscarinic autoreceptors. In the gastrointestinal tract, xanomeline inhibited small intestinal and colonic motility, but increased small intestinal transmural potential difference. In contrast to the nonselective muscarinic agonist oxotremorine, xanomeline did not produce salivation, tremor nor hypothermia; it did, however, increase heart rate. The present data are consistent with the interpretation that xanomeline is a novel muscarinic receptor agonist with functional selectivity for M1 muscarinic receptors both in vitro and in vivo.  相似文献   

20.
Four subtypes of bombesin receptors are identified (gastrin-releasing peptide receptor, neuromedin B receptor, the orphan receptor bombesin receptor subtype 3 (BB3 or BRS-3) and bombesin receptor subtype 4 (BB4)), however, only the pharmacology of the gastrin-releasing peptide receptor has been well studied. This lack of data is due in part to the absence of a general ligand. Recently we have discovered a ligand, 125I-[D-Tyr6,betaAla11,Phe13,Nle14]bombesin-(6-1 4) that binds to BRS-3 receptors. In this study we investigate its ability to interact with all four bombesin receptor subtypes. In rat pancreatic acini containing only gastrin-releasing peptide receptor and in BB4 transfected BALB cells, this ligand and 125I-[Tyr4]bombesin, the conventional gastrin-releasing peptide receptor ligand, gave similar results for receptor number, affinity for bombesin and affinity for the unlabeled ligand. In neuromedin B receptor transfected BALB cells, this ligand and 125I-[D-Tyr0]neuromedin B, the generally used neuromedin B receptor ligand, gave similar results for receptor number, neuromedin B affinity or the unlabeled ligand affinity. Lastly, in BRS-3 transfected BALB cells, only this ligand had high affinity. For all four bombesin receptors this ligand had an affinity of 1-8 nM and was equal or greater in affinity than any other specific ligands for any receptor. The unlabeled ligand is specific for gastrin-releasing peptide receptors on rat pancreatic acini and did not inhibit binding of 125I-cholecystokinin octapeptide (125I-CCK-8), 125I-vasoactive intestinal peptide (125I-VIP) or 125I-endothelin to their receptors. The unlabeled ligand was an agonist only at the gastrin-releasing peptide receptor in rat acini and did not interact with CCK(A) receptors or muscarinic M3 acetylcholine receptors to increase [3H]inositol phosphates. These results demonstrate 125I-[D-Tyr6,betaAla11,Phe13,Nle14]bombesin-(6-1 4) is a unique ligand with high affinity for all subtypes of bombesin receptors. Because of the specificity for bombesin receptors, this ligand will be a valuable addition for such pharmacological studies as screening for bombesin receptor agonists or antagonists and, in particular, for investigating BRS-3 cell biology, a receptor for which no ligand currently exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号